login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (12*n)!*n! / ((6*n)!*(4*n)!*(3*n)!).
70

%I #69 Oct 06 2021 13:06:09

%S 1,4620,89237148,2005604901300,47913489552349980,

%T 1183237138556438547120,29836408028165719837829700,

%U 763223193205837155576920270520,19728995249931089572476730815356700,514073874001824145407534840409364592528,13479596359042448208364688886016106250225648

%N a(n) = (12*n)!*n! / ((6*n)!*(4*n)!*(3*n)!).

%C From _Peter Bala_, Jan 24 2020: (Start)

%C a(p^k) == a(p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integer k (write a(n) as C(12*n,6*n)*C(6*n,3*n)/C(4*n,n) and use Mestrovic, equation 39, p. 12).

%C More generally, for this sequence and the other integer factorial ratio sequences listed in the cross references, the congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) may hold for any prime p >= 5 and any positive integers n and k. (End)

%C a(n*p) == a(n) ( mod p^3 ) are proved for all such sequences in Section 5 of Zudilin's article. - _Wadim Zudilin_, Jul 30 2021

%H Gheorghe Coserea, <a href="/A295431/b295431.txt">Table of n, a(n) for n = 0..202</a>

%H F. Beukers and Heckman, G., <a href="http://eudml.org/doc/143655">Monodromy for the hypergeometric function nFn-1"</a>, Inventiones mathematicae 95.2 (1989): 325-354.

%H Jonathan Bober, <a href="http://arxiv.org/abs/0709.1977">Factorial ratios, hypergeometric series, and a family of step functions</a>, 2007, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., Vol. 79, Issue 2 (2009), 422-444.

%H Gheorghe Coserea, <a href="/A295431/a295431.txt">Table with the parameters of the 52 sporadic integral factorial ratio sequences</a>

%H R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011.

%H F. Rodriguez-Villegas, <a href="http://arxiv.org/abs/math/0701362">Integral ratios of factorials and algebraic hypergeometric functions</a>, arXiv:math/0701362 [math.NT], 2007.

%H Wadim Zudilin, <a href="https://arxiv.org/abs/1901.07843">Congruences for q-binomial coefficients</a>, arXiv:1901.07843 [math.NT], 2019.

%F G.f.: hypergeom([1/12, 5/12, 7/12, 11/12], [1/3, 1/2, 2/3], 27648*x).

%F From _Karol A. Penson_, May 08 2018 (Start):

%F Asymptotics: a(n) ~ (2^n)^10*(3^n)^3*sqrt(3/n)*(2592*n^2+72*n+1)/(15552*n^2*sqrt(Pi)), for n->infinity.

%F Integral representation as the n-th moment of the positive function V(x) on x = (0, 27648), i.e. in Maple notation: a(n) = int(x^n*V(x), x = 0..27648), n=0,1..., where V(x) = 3^(3/4)*sqrt(2)*hypergeom([1/12, 5/12, 7/12, 3/4], [1/6, 1/2, 2/3], (1/27648)*x)*GAMMA(3/4)/(36*sqrt(Pi)*x^(11/12)*GAMMA(2/3)*GAMMA(7/12))+3^(1/4)*sqrt(2)*cos(5*Pi*(1/12))*GAMMA(2/3)*csc((1/12)*Pi)*GAMMA(3/4)*hypergeom([5/12, 3/4, 11/12, 13/12], [1/2, 5/6, 4/3], (1/27648)*x)/(4608*Pi^(3/2)*GAMMA(11/12)*x^(7/12))+3^(1/4)*cos(5*Pi*(1/12))*GAMMA(11/12)*hypergeom([7/12, 11/12, 13/12, 5/4], [2/3, 7/6, 3/2], (1/27648)*x)/(6912*sqrt(Pi)*GAMMA(2/3)*GAMMA(3/4)*x^(5/12))+7*3^(3/4)*sin(5*Pi*(1/12))*GAMMA(2/3)*GAMMA(7/12)*hypergeom([11/12, 5/4, 17/12, 19/12], [4/3, 3/2, 11/6], (1/27648)*x)/(2654208*Pi^(3/2)*GAMMA(3/4)*x^(1/12)). The function V(x) is singular at both edges of its support and is U-shaped. The function V(x) is unique as it is the solution of the Hausdorff moment problem. (End)

%F D-finite with recurrence: n*(3*n-1)*(2*n-1)*(3*n-2)*a(n) -24*(12*n-11)*(12*n-1)*(12*n-5)*(12*n-7)*a(n-1)=0. - _R. J. Mathar_, Jan 27 2020

%p seq((12*n)!*n!/((6*n)!*(4*n)!*(3*n)!),n=0..10); # _Karol A. Penson_, May 08 2018

%t Table[((12n)!n!)/((6n)!(4n)!(3n)!),{n,0,20}] (* _Harvey P. Dale_, Sep 14 2019 *)

%o (PARI)

%o r=[12,1]; s=[6,4,3];

%o p=[1/12,5/12,7/12,11/12]; q=[1/3,1/2,2/3];

%o C(r,s) = prod(k=1, #r, r[k]^r[k])/prod(k=1, #s, s[k]^s[k]);

%o u(r, s, N=20) = {

%o my(f=(v,n)->prod(k=1, #v, (v[k]*n)!));

%o apply(n->f(r,n)/f(s,n), [0..N-1]);

%o };

%o u(r,s,11)

%o \\ test 1:

%o \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");

%o read("hypergeom.gpi");

%o N=200; x='x+O('x^N); u(r,s,N) == Vec(hypergeom(p, q, C(r,s)*x, N))

%o \\ test 2: check consistency of all parameters

%o system("wget https://oeis.org/A295431/a295431.txt");

%o N=200; x='x+O('x^N); w = read("a295431.txt");

%o 52==vecsum(vector(#w, n, u(w[n][1], w[n][2], N) == Vec(hypergeom(w[n][3], w[n][4], C(w[n][1], w[n][2])*x, N))))

%Y The 52 sporadic integral factorial ratio sequences:

%Y Idx EntryID u(r,s) dFd-1

%Y ---+---------+--------------+-----------------------------------------------+

%Y 1 A295431 [12,1] [1/12,5/12,7/12,11/12]

%Y [6,4,3] [1/3,1/2,2/3]

%Y 2 A295432 [12,3,2] [1/12,5/12,7/12,11/12]

%Y [6,6,4,1] [1/6,1/2,5/6]

%Y 3 A295433 [12,1] [1/12,1/6,5/12,7/12,5/6,11/12]

%Y [8,3,2] [1/8,3/8,1/2,5/8,7/8]

%Y 4 A295434 [12,3] [1/12,1/3,5/12,7/12,2/3,11/12]

%Y [8,6,1] [1/8,3/8,1/2,5/8,7/8]

%Y 5 A295435 [12,3] [1/12,1/3,5/12,7/12,2/3,11/12]

%Y [6,5,4] [1/5,2/5,1/2,3/5,4/5]

%Y 6 A295436 [12,5] [1/12,1/6,5/12,7/12,5/6,11/12]

%Y [10,4,3] [1/10,3/10,1/2,7/10,9/10]

%Y 7 A295437 [18,1] [1/18,5/18,7/18,11/18,13/18,17/18]

%Y [9,6,4] [1/4,1/3,1/2,2/3,3/4]

%Y 8 A295438 [9,2] [1/9,2/9,4/9,5/9,7/9,8/9]

%Y [6,4,1] [1/6,1/4,1/2,3/4,5/6]

%Y 9 A295439 [9,4] [1/9,2/9,4/9,5/9,7/9,8/9]

%Y [8,3,2] [1/8,3/8,1/2,5/8,7/8]

%Y 10 A295440 [18,4,3] [1/18,5/18,7/18,11/18,13/18,17/18]

%Y [9,8,6,2] [1/8,3/8,1/2,5/8,7/8]

%Y 11 A295441 [9,1] [1/9,2/9,4/9,5/9,7/9,8/9]

%Y [5,3,2] [1/5,2/5,1/2,3/5,4/5]

%Y 12 A295442 [18,5,3] [1/18,5/18,7/18,11/18,13/18,17/18]

%Y [10,9,6,1] [1/10,3/10,1/2,7/10,9/10]

%Y 13 A295443 [18,4] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]

%Y [12,9,1] [1/12,1/3,5/12,7/12,2/3,11/12]

%Y 14 A295444 [12,2] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]

%Y [9,4,1] [1/9,2/9,4/9,5/9,7/9,8/9]

%Y 15 A295445 [18,2] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]

%Y [9,6,5] [1/5,1/3,2/5,3/5,2/3,4/5]

%Y 16 A295446 [10,6] [1/10,1/6,3/10,1/2,7/10,5/6,9/10]

%Y [9,5,2] [1/9,2/9,4/9,5/9,7/9,8/9]

%Y 17 A295447 [14,3] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]

%Y [9,7,1] [1/9,2/9,4/9,5/9,7/9,8/9]

%Y 18 A295448 [18,3,2] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]

%Y [9,7,6,1] [1/7,2/7,3/7,4/7,5/7,6/7]

%Y 19 A295449 [12,2] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]

%Y [7,4,3] [1/7,2/7,3/7,4/7,5/7,6/7]

%Y 20 A295450 [14,6,4] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]

%Y [12,7,3,2] [1/12,1/3,5/12,7/12,2/3,11/12]

%Y 21 A295451 [14,1] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]

%Y [7,5,3] [1/5,1/3,2/5,3/5,2/3,4/5]

%Y 22 A295452 [10,6,1] [1/10,1/6,3/10,1/2,7/10,5/6,9/10]

%Y [7,5,3,2] [1/7,2/7,3/7,4/7,5/7,6/7]

%Y 23 A295453 [15,1] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]

%Y [9,5,2] [1/9,2/9,4/9,1/2,5/9,7/9,8/9]

%Y 24 A295454 [30,9,5] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]

%Y [18,15,10,1] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]

%Y 25 A295455 [15,4] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]

%Y [12,5,2] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]

%Y 26 A295456 [30,5,4] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]

%Y [15,12,10,2] [1/12,1/3,5/12,1/2,7/12,2/3,11/12]

%Y 27 A295457 [15,4] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]

%Y [8,6,5] [1/8,1/6,3/8,1/2,5/8,5/6,7/8]

%Y 28 A295458 [30,5,4] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]

%Y [15,10,8,6] [1/8,1/3,3/8,1/2,5/8,2/3,7/8]

%Y 29 A295459 [15,2] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]

%Y [10,4,3] [1/10,1/4,3/10,1/2,7/10,3/4,9/10]

%Y 30 A295460 [30,3,2] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]

%Y [15,10,6,4] [1/5,1/4,2/5,1/2,3/5,3/4,4/5]

%Y 31 A211417 [30,1] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]

%Y [15,10,6] [1/5,1/3,2/5,1/2,3/5,2/3,4/5]

%Y 32 A295462 [15,2] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]

%Y [10,6,1] [1/10,1/6,3/10,1/2,7/10,5/6,9/10]

%Y 33 A295463 [15,7] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]

%Y [14,5,3] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]

%Y 34 A295464 [30,5,3] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]

%Y [15,10,7,6] [1/7,2/7,3/7,1/2,4/7,5/7,6/7]

%Y 35 A295465 [30,5,3] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]

%Y [15,12,10,1] [1/12,1/4,5/12,1/2,7/12,3/4,11/12]

%Y 36 A295466 [15,6,1] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]

%Y [12,5,3,2] [1/12,1/4,5/12,1/2,7/12,3/4,11/12]

%Y 37 A295467 [15,1] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]

%Y [8,5,3] [1/8,1/4,3/8,1/2,5/8,3/4,7/8]

%Y 38 A295468 [30,5,3,2] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]

%Y [15,10,8,6,1] [1/8,1/4,3/8,1/2,5/8,3/4,7/8]

%Y 39 A295469 [20,3] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]

%Y [12,10,1] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]

%Y 40 A295470 [20,6,1] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]

%Y [12,10,3,2] [1/12,1/3,5/12,1/2,7/12,2/3,11/12]

%Y 41 A295471 [20,1] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]

%Y [10,8,3] [1/8,1/3,3/8,1/2,5/8,2/3,7/8]

%Y 42 A295472 [20,3,2] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]

%Y [10,8,6,1] [1/8,1/6,3/8,1/2,5/8,5/6,7/8]

%Y 43 A061164 [20,1] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]

%Y [10,7,4] [1/7,2/7,3/7,1/2,4/7,5/7,6/7]

%Y 44 A295474 [20,7,2] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]

%Y [14,10,4,1] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]

%Y 45 A295475 [20,3] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]

%Y [10,9,4] [1/9,2/9,4/9,1/2,5/9,7/9,8/9]

%Y 46 A295476 [20,9,6] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]

%Y [18,10,4,3] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]

%Y 47 A295477 [24,1] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]

%Y [12,8,5] [1/5,1/4,2/5,1/2,3/5,3/4,4/5]

%Y 48 A295478 [24,5,2] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]

%Y [12,10,8,1] [1/10,1/4,3/10,1/2,7/10,3/4,9/10]

%Y 49 A295479 [24,4,1] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]

%Y [12,8,7,2] [1/7,2/7,3/7,1/2,4/7,5/7,6/7]

%Y 50 A295480 [24,7,4] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]

%Y [14,12,8,1] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]

%Y 51 A295481 [24,4,3] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]

%Y [12,9,8,2] [1/9,2/9,4/9,1/2,5/9,7/9,8/9]

%Y 52 A295482 [24,9,6,4] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]

%Y [18,12,8,3,2] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]

%Y Cf. A304126.

%K nonn

%O 0,2

%A _Gheorghe Coserea_, Nov 22 2017