login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211417
Integral factorial ratio sequence: a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!).
7
1, 77636318760, 53837289804317953893960, 43880754270176401422739454033276880, 38113558705192522309151157825210540422513019720, 34255316578084325260482016910137568877961925210286281393760
OFFSET
0,2
COMMENTS
The integrality of this sequence can be used to prove Chebyshev's estimate C(1)*x/log(x) <= #{primes <= x} <= C(2)*x/log(x), for x sufficiently large; the constant C(1) = 0.921292... and C(2) = 1.105550.... Chebyshev's approach used the related step function floor(x) -floor(x/2) -floor(x/3) -floor(x/5) +floor(x/30). See A182067.
This sequence is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin.
The o.g.f. sum {n >= 0} a(n)*z^n is a generalized hypergeometric series of type 8F7 (see Bober, Table 2, Entry 31) and is an algebraic function of degree 483840 over the field of rational functions Q(z) (see Rodriguez-Villegas). Bober remarks that the monodromy group of the differential equation satisfied by the o.g.f. is W(E_8), the Weyl group of the E_8 root system.
See the Bala link for the proof that a(n), n = 0,1,2..., is an integer.
Congruences: a(p^k) == a(p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integer k (write a(n) as C(30*n,15*n)*C(15*n,5*n)/C(6*n,n) and use equation 39 in Mestrovic, p. 12). More generally, the congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) may hold for any prime p >= 5 and any positive integers n and k. Cf. A295431. - Peter Bala, Jan 24 2020
LINKS
Frits Beukers, Hypergeometric functions, how special are they?, Notices Amer. Math. Soc. 61 (2014), no. 1, 48--56. MR3137256
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
Florian Fürnsinn and Sergey Yurkevich, Algebraicity of hypergeometric functions with arbitrary parameters, arXiv:2308.12855 [math.CA], 2023.
Fernando Rodriguez Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math.NT/0701362, 2007.
Fernando Rodriguez Villegas, Mixed Hodge numbers and factorial ratios, arXiv:1907.02722 [math.NT], 2019.
K. Soundararajan, Integral Factorial Ratios, arXiv:1901.05133 [math.NT], 2019.
Wadim Zudilin, Integer-valued factorial ratios, MathOverflow question 26336, 2010.
FORMULA
a(n) ~ 2^(14*n-1) * 3^(9*n-1/2) * 5^(5*n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 30 2016
MATHEMATICA
Table[(30 n)!*n!/((15 n)!*(10 n)!*(6 n)!), {n, 0, 5}] (* Michael De Vlieger, Oct 02 2015 *)
PROG
(PARI) a(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!);
vector(10, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
(Magma) [Factorial(30*n)*Factorial(n)/(Factorial(15*n)*Factorial(10*n)*Factorial(6*n)): n in [0..10]]; // Vincenzo Librandi, Oct 03 2015
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 11 2012
STATUS
approved