login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338337
Coefficient of x^(6*n)*y^(6*n)*z^(6*n) in the expansion of 1/(1-x-y^2-z^3).
2
1, 4620, 135795660, 5190977391600, 221838126928317900, 10086906430733029017120, 477156732636269771364879600, 23199870600247661786357661924000, 1150983828787218131441395889200471500, 57991163446756752913635026142306805792320, 2957727121295876265116937111814024549631408160
OFFSET
0,2
COMMENTS
The other diagonal coefficients are zero.
LINKS
FORMULA
a(n) = (11*n)! / ((2*n)! * (3*n)! * (6*n)!). - Vaclav Kotesovec, Oct 28 2020
MAPLE
a:= proc(n) local h; 1/(1-x-y^2-z^3); for h in [x, y, z]
do coeff(series(%, h, 1+6*n), h, 6*n) od
end:
seq(a(n), n=0..10); # Alois P. Heinz, Oct 23 2020
MATHEMATICA
nmax = 10; Flatten[{1, Table[Coefficient[Series[1/(1 - x - y^2 - z^3), {x, 0, 6*n}, {y, 0, 6*n}, {z, 0, 6*n}], x^(6*n)*y^(6*n)*z^(6*n)], {n, 1, nmax}]}] (* Vaclav Kotesovec, Oct 23 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 22 2020
EXTENSIONS
More terms from Alois P. Heinz, Oct 23 2020
STATUS
approved