login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238131
Number of parts in all partitions of n into odd number of distinct parts.
5
0, 1, 1, 1, 1, 1, 4, 4, 7, 10, 13, 16, 22, 25, 31, 42, 48, 59, 73, 89, 108, 132, 156, 190, 227, 271, 318, 380, 449, 526, 618, 722, 841, 980, 1138, 1321, 1526, 1760, 2028, 2333, 2683, 3070, 3517, 4017, 4584, 5228, 5948, 6757, 7673, 8696, 9845, 11132, 12577
OFFSET
0,7
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Alois P. Heinz)
Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function s_o(n).
Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
FORMULA
a(n) = (1/2)*A015723(n)+(1/2)*sum{k=0..A235963(n)-1, (-1)^A110654(k)*A000005(n-A001318(k))}.
G.f.: (1/2)*prod(k>=1, 1+x^k ) * sum(k>=1, x^k/(1+x^k) ) + (1/2)*prod(k>=1, 1-x^k) * sum(k>=1, x^k/(1-x^k) ).
G.f.: (2 * (x; x)_inf * (log(1-x) + psi_x(1)) - (-1; x)_inf * (log(1-x) + psi_x(1-log(-1)/log(x))))/(4*log(x)), where psi_q(z) is the q-digamma function, (a; q)_inf is the q-Pochhammer symbol, log(-1) = i*Pi. - Vladimir Reshetnikov, Nov 21 2016
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 27 2018
EXAMPLE
a(8)=7 because the partitions of 8 into odd number of distinct parts are: 8, 5+2+1 and 4+3+1.
MAPLE
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, [1, 0$3], b(n, i-1)+`if`(i>n, 0, (p->
[p[2], p[1], p[4]+p[2], p[3]+p[1]])(b(n-i, i-1)))))
end:
a:= n-> b(n$2)[4]:
seq(a(n), n=0..50); # Alois P. Heinz, Dec 27 2015
MATHEMATICA
max = 50; s = (1/2)*Product[1+x^k, {k, 1, max}]*Sum[x^k/(1+x^k), {k, 1, max}] + (1/2)*Product[1-x^k, {k, 1, max}]*Sum[x^k/(1-x^k), {k, 1, max}] + O[x]^(max+1); CoefficientList[s, x] (* Jean-François Alcover, Dec 27 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Mircea Merca, Feb 18 2014
STATUS
approved