login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109544
Expansion of (1 + x - x^3 - 2*x^4)/(1 - x^2 - x^3 - x^4 - x^5).
8
1, 1, 1, 1, 1, 4, 4, 7, 10, 16, 25, 37, 58, 88, 136, 208, 319, 490, 751, 1153, 1768, 2713, 4162, 6385, 9796, 15028, 23056, 35371, 54265, 83251, 127720, 195943, 300607, 461179, 707521, 1085449, 1665250, 2554756, 3919399, 6012976, 9224854, 14152381
OFFSET
0,6
LINKS
Peter Borwein and Kevin G. Hare, Some Computations on Pisot and Salem Numbers, CARMA Preprint, 2000, p.7, Table 1.
FORMULA
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5).
MATHEMATICA
LinearRecurrence[{0, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, 50]
CoefficientList[Series[(1+x-x^3-2x^4)/(1-x^2-x^3-x^4-x^5), {x, 0, 50}], x] (* Harvey P. Dale, Oct 24 2021 *)
PROG
(Maxima) makelist(ratcoef(taylor((1 + x - x^3 - 2*x^4)/(1 - x^2 - x^3 - x^4 - x^5), x, 0, n), x, n), n, 0, 50); /* Franck Maminirina Ramaharo, Oct 31 2018 */
(PARI) x='x+O('x^50); Vec((1+x-x^3-2*x^4)/(1-x^2-x^3-x^4-x^5)) \\ G. C. Greubel, Nov 03 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-x^3-2*x^4)/(1-x^2-x^3-x^4-x^5))); // G. C. Greubel, Nov 03 2018
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 20 2005
STATUS
approved