login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238128
Triangle read by rows: T(n,k) gives the number of ballot sequences of length n having largest descent k, n>=0, 0<=k<=n.
12
1, 1, 0, 2, 0, 0, 3, 1, 0, 0, 5, 4, 1, 0, 0, 7, 13, 5, 1, 0, 0, 11, 37, 21, 6, 1, 0, 0, 15, 100, 78, 31, 7, 1, 0, 0, 22, 265, 292, 133, 43, 8, 1, 0, 0, 30, 694, 1028, 586, 215, 57, 9, 1, 0, 0, 42, 1828, 3691, 2453, 1073, 325, 73, 10, 1, 0, 0, 56, 4815, 13004, 10357, 5058, 1836, 467, 91, 11, 1, 0, 0
OFFSET
0,4
COMMENTS
Also number of standard Young tableaux with a pair of cells (v,v+1) such that v lies k rows above v+1, and no pair (u,u+1) with a larger such separation exists.
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..35, flattened
EXAMPLE
Triangle starts:
00: 1;
01: 1, 0;
02: 2, 0, 0;
03: 3, 1, 0, 0;
04: 5, 4, 1, 0, 0;
05: 7, 13, 5, 1, 0, 0;
06: 11, 37, 21, 6, 1, 0, 0;
07: 15, 100, 78, 31, 7, 1, 0, 0;
08: 22, 265, 292, 133, 43, 8, 1, 0, 0;
09: 30, 694, 1028, 586, 215, 57, 9, 1, 0, 0;
10: 42, 1828, 3691, 2453, 1073, 325, 73, 10, 1, 0, 0;
11: 56, 4815, 13004, 10357, 5058, 1836, 467, 91, 11, 1, 0, 0;
12: 77, 12867, 46452, 43462, 23953, 9631, 2941, 645, 111, 12, 1, 0, 0;
...
MAPLE
b:= proc(n, v, l) option remember; `if`(n<1, 1, expand(add(
`if`(i=1 or l[i-1]>l[i], (p->`if`(i<v, add(coeff(p, x, h)*
`if`(h<v-i, x^(v-i), x^h), h=0..max(v-i, degree(p))), p))
(b(n-1, i, subsop(i=l[i]+1, l))), 0), i=1..nops(l))+
b(n-1, nops(l)+1, [l[], 1])))
end:
T:= n-> (p->seq(coeff(p, x, i), i=0..n))(b(n-1, 1, [1])):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, v_, l_List] := b[n, v, l] = If[n<1, 1, Expand[Sum[If[i == 1 || l[[i-1]] > l[[i]], Function[{p}, If[i<v, Sum[Coefficient[p, x, h]* If[h < v-i, x^(v-i), x^h], {h, 0, Max[v-i, Exponent[p, x]]}], p]][b[n-1, i, ReplacePart[l, i -> l[[i]]+1]]], 0], {i, 1, Length[l]}] + b[n-1, Length[l]+1, Append[l, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n-1, 1, {1}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 07 2015, translated from Maple *)
CROSSREFS
Row sums are A000085.
Cf. A238129.
Sequence in context: A369312 A259479 A238343 * A238121 A171380 A323592
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt and Alois P. Heinz, Feb 21 2014
STATUS
approved