login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238133
Difference between A238131(n) and A238132(n).
2
0, 1, 1, -1, -1, -3, 0, -2, 1, 2, 1, 2, 4, 1, -1, 4, -2, -1, -3, -1, -2, -2, -6, 0, -1, 1, -4, 0, 3, 2, 2, 2, 3, 0, 4, 7, 0, 0, 2, -3, 7, -2, -1, -3, -2, -4, 0, -3, -3, -2, -1, -10, -1, 0, 1, -1, 0, -6, 2, 2, 0, 4, 3, 4, 0, 2, 4, 3, 0, 5, 8, 2, 0, 1, -1, 1, -3
OFFSET
0,6
COMMENTS
Difference between the number of parts in all partitions of n into odd number of distinct parts and the number of parts in all partitions of n into even number of distinct parts.
The convolution of A000005 and A010815.
LINKS
Mircea Merca, A new look on the generating function for the number of divisors, Journal of Number Theory, Volume 149, April 2015, Pages 57-69.
Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, difference s_o(n)-s_e(n).
Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
FORMULA
a(n) = Sum_{k=0..A235963(n)-1} (-1)^A110654(k) * A000005(n-A001318(k)).
G.f.: Product_{k>=1} (1-x^k) * Sum_{k>=1} x^k/(1-x^k).
G.f.: (x)_inf * (log(1-x) + psi_x(1))/log(x), where psi_q(z) is the q-digamma function, (q)_inf is the q-Pochhammer symbol (the Euler function).
MAPLE
A238133 := proc(n)
add( numtheory[tau](k)*A010815(n-k), k=0..n) ;
end proc: # R. J. Mathar, Jun 18 2016
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, [1, 0$3], b(n, i-1)+`if`(i>n, 0, (p->
[p[2], p[1], p[4]+p[2], p[3]+p[1]])(b(n-i, i-1)))))
end:
a:= n-> (p-> p[4]-p[3])(b(n$2)):
seq(a(n), n=0..100); # Alois P. Heinz, Jun 18 2016
MATHEMATICA
Table[SeriesCoefficient[QPochhammer[x] (Log[1 - x] + QPolyGamma[1, x])/Log[x], {x, 0, n}], {n, 0, 80}] (* Vladimir Reshetnikov, Nov 20 2016 *)
KEYWORD
sign,look
AUTHOR
Mircea Merca, Feb 18 2014
STATUS
approved