login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212532
Number of nondecreasing sequences of n 1..4 integers with every element dividing the sequence sum.
1
4, 4, 7, 10, 15, 15, 24, 29, 39, 45, 57, 65, 83, 92, 111, 127, 149, 163, 193, 213, 245, 270, 305, 333, 378, 408, 455, 496, 547, 587, 650, 697, 763, 819, 889, 949, 1033, 1096, 1183, 1261, 1353, 1431, 1539, 1625, 1737, 1836, 1953, 2057, 2192, 2300, 2439, 2566, 2711
OFFSET
1,1
COMMENTS
Column 4 of A212536.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) + a(n-12) - a(n-13) - a(n-14) + a(n-16) + a(n-17) - a(n-18).
Empirical g.f.: x*(4 - x^2 - x^3 + 2*x^4 - 2*x^5 + x^6 + 3*x^7 + 4*x^8 - 3*x^9 - 3*x^10 + x^11 + x^12 - x^13 + 2*x^15 - x^17) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)^2*(1 - x^2 + x^4)). - Colin Barker, Jul 20 2018
EXAMPLE
Some solutions for n=8:
..1....4....2....2....1....1....1....2....1....1....1....2....3....1....1....1
..1....4....2....3....1....1....1....2....1....2....1....2....3....1....1....3
..2....4....2....3....1....2....1....4....1....2....3....2....3....1....2....3
..4....4....2....3....3....2....1....4....1....2....3....2....3....1....2....3
..4....4....4....3....3....2....1....4....1....2....4....2....3....1....2....3
..4....4....4....3....3....2....1....4....1....3....4....2....3....1....4....3
..4....4....4....3....3....2....2....4....2....3....4....4....3....3....4....4
..4....4....4....4....3....4....2....4....4....3....4....4....3....3....4....4
CROSSREFS
Cf. A212536.
Sequence in context: A185670 A011981 A238131 * A109544 A187893 A293678
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 20 2012
STATUS
approved