login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236327
a(n)*Pi is the total length of irregular spiral (center points: 1, 2, 3, 4, 5; pattern 2) after n rotations.
4
2, 8, 19, 30, 32, 38, 49, 60, 62, 68, 79, 90, 92, 98, 109, 120, 122, 128, 139, 150, 152, 158, 169, 180, 182, 188, 199, 210, 212, 218, 229, 240, 242, 248, 259, 270, 272, 278, 289, 300, 302, 308, 319, 330, 332, 338, 349, 360, 362, 368, 379, 390, 392, 398, 409, 420, 422, 428, 439, 450, 452, 458, 469, 480, 482, 488
OFFSET
1,1
COMMENTS
Let points 1, 2, 3, 4 & 5 be placed on a straight line at intervals of 1 unit. At point 1 make a half unit circle then at point 2 make another half circle; by selecting radius point on the right hand side of point 1 (pattern 2); at point 3 make another half circle and maintain continuity of circumferences. Continue using this procedure at point 4, 5, 1, ... and so on.
Conjecture: All forms of 120 permutations 5 center points are non-expanded loops.
FORMULA
Conjecture from Colin Barker, Jul 12 2014: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5).
G.f.: x*(11*x^3+11*x^2+6*x+2) / ((x-1)^2*(x+1)*(x^2+1)). (End)
PROG
(Small Basic)
n =5 'center points number 1<=n<=9
pt=1 'pattern1: pt=-1; pattern2: pt=1
i=12345 'center points order
rota=100 'rotations
sum=0
rc=1
r[1]=1
For i1 = 1 To n
d1=i/Math.Power(10, 1)
i=math.Floor(d1)
d[i1]=(d1-i)*Math.Power(10, 1)
EndFor
For j1=1 To n
For j2=1 To n
If d[j1]=j2 Then
dd[j2]=j1
endif
EndFor
EndFor
For j3=1 To n
If j3=n Then
dxy[j3]=dd[j3]-dd[1]
Else
dxy[j3]=dd[j3]-dd[j3+1]
EndIf
EndFor
For k1=1 To rota*n
cc=Math.Floor((k1-1)/n)
p[k1]=r[k1]+pt*dxy[k1-cc*n]*Math.Power(-1, Math.Remainder(k1, 2))
r[k1+1]=p[k1]
sum=sum+math.Abs(r[k1])
If math.Abs(r[k1])>0 Then
rc=rc+1
EndIf
If rc=3 Then
TextWindow.Write(sum+", ")
rc=1
EndIf
EndFor
CROSSREFS
Cf. A014105 (2 center points); A234902, A234903, A234904 (3 center points); A235088, A235089 (4 center points).
Sequence in context: A093012 A049525 A286263 * A109071 A196134 A256321
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Jan 22 2014
STATUS
approved