login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234904
a(n)*Pi is the total length of irregular spiral (center points: 2, 1, 3) after n rotations.
8
3, 12, 18, 21, 30, 36, 39, 48, 54, 57, 66, 72, 75, 84, 90, 93, 102, 108, 111, 120, 126, 129, 138, 144, 147, 156, 162, 165, 174, 180, 183, 192, 198, 201, 210, 216, 219, 228, 234, 237, 246, 252, 255, 264, 270, 273, 282, 288, 291, 300, 306, 309, 318, 324, 327, 336, 342, 345, 354, 360, 363, 372, 378, 381, 390, 396, 399, 408
OFFSET
1,1
COMMENTS
Let points 2, 1 & 3 be placed on a straight line at intervals of 1 unit. At point 1 make a half unit circle then at point 2 make another half circle and maintain continuity of circumferences. Continue using this procedure at points 3, 1, 2, and so on. The form of spiral is non-expanded loop. See illustration in links.
FORMULA
a(n) = 3*A047234(n+1).
From Colin Barker, Jul 12 2014: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4).
G.f.: 3*x*(x+1)*(2*x+1) / ((x-1)^2*(x^2+x+1)). (End)
Interlaced polynomials: a(3n) = 18*n; a(3n+1) = 18*n+3; a(3n+2) = 18*n + 12 for n > 0. - Avi Friedlich, May 16 2015
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1] + a[n - 3] - a[n - 4], a[1] == 3,
a[2] == 12, a[3] == 18, a[4] == 21}, a, {n, 1, 68}] (* Michael De Vlieger, May 09 2015 *)
LinearRecurrence[{1, 0, 1, -1}, {3, 12, 18, 21}, 70] (* Vincenzo Librandi, May 10 2015 *)
PROG
(Small Basic)
a[1]=3
For n = 1 To 100
d1=3
m3 = math.Remainder(n+1, 3)
If m3 = 0 Then
d1 = 6
EndIf
If m3 = 2 Then
d1 = 9
EndIf
a[n+1]=a[n]+d1
TextWindow.Write(a[n]+", ")
EndFor
(PARI) Vec(3*x*(x+1)*(2*x+1)/((x-1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Jul 12 2014
(Magma) I:=[3, 12, 18, 21]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, May 10 2015
CROSSREFS
Cf. A014105*Pi (total spiral length, 2 inline center points).
Sequence in context: A342776 A104641 A032703 * A284806 A125821 A239052
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Jan 01 2014
STATUS
approved