login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236328
a(n) = sigma(n,1) + sigma(n,2) + ... + sigma(n,n).
2
1, 8, 42, 374, 3910, 57210, 960806, 19261858, 435877581, 11123320196, 313842837682, 9729290348244, 328114698808286, 11967567841654606, 469172063576559644, 19676848703371278522, 878942778254232811954, 41661071646298278566886, 2088331858752553232964218
OFFSET
1,2
COMMENTS
Sigma(n,k) is the sum of the k-th powers of the divisors of n.
The sequence seems to be strictly increasing. - Chayim Lowen, Aug 05 2015.
This is true. Moreover, subsequent ratios a(n+1)/a(n) steadily grow for n>3. The difference of subsequent ratios tends to the limit e = 2.718... The reason is that a(n) roughly behaves like n^n; already the second largest term in the sum is smaller by a factor 2^n (for even n) or by a factor 3^n (for n=6k+3) etc. - M. F. Hasler, Aug 16 2015
LINKS
FORMULA
a(n) = n + Sum_{d|n, d>1} d*(d^n-1)/(d-1). - Chayim Lowen, Aug 02 2015
a(n) >= n*(n^n+n-2)/(n-1) for n>1. - Chayim Lowen, Aug 05 2015
a(n) = A065805(n)-A000005(n). - Chayim Lowen, Aug 11 2015
EXAMPLE
a(4) = sigma(4,1) + sigma(4,2) + sigma(4,3) + sigma(4,4) = 7 + 21 + 73 + 273 = 374.
MAPLE
seq(add(numtheory:-sigma[k](n), k=1..n), n=1..50); # Robert Israel, Aug 04 2015
MATHEMATICA
Table[Sum[DivisorSigma[i, n], {i, n}], {n, 19}] (* Michael De Vlieger, Aug 06 2015 *)
f[n_] := Sum[DivisorSigma[i, n], {i, n}]; (* OR *) f[n_] := Block[{d = Rest@Divisors@n}, n + Total[(d^(n + 1) - d)/(d - 1)]]; (* then *) Array[f, 19] (* Robert G. Wilson v, Aug 06 2015 *)
PROG
(PARI) vector(30, n, sum(k=1, n, sigma(n, k)))
(PARI) vector(30, n, n + sumdiv(n, d, if (d>1, (d^(n+1)-d)/(d-1)))) \\ Michel Marcus, Aug 04 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 22 2014
STATUS
approved