Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 12 2014 16:46:03
%S 2,8,19,30,32,38,49,60,62,68,79,90,92,98,109,120,122,128,139,150,152,
%T 158,169,180,182,188,199,210,212,218,229,240,242,248,259,270,272,278,
%U 289,300,302,308,319,330,332,338,349,360,362,368,379,390,392,398,409,420,422,428,439,450,452,458,469,480,482,488
%N a(n)*Pi is the total length of irregular spiral (center points: 1, 2, 3, 4, 5; pattern 2) after n rotations.
%C Let points 1, 2, 3, 4 & 5 be placed on a straight line at intervals of 1 unit. At point 1 make a half unit circle then at point 2 make another half circle; by selecting radius point on the right hand side of point 1 (pattern 2); at point 3 make another half circle and maintain continuity of circumferences. Continue using this procedure at point 4, 5, 1, ... and so on.
%C Conjecture: All forms of 120 permutations 5 center points are non-expanded loops.
%H Kival Ngaokrajang, <a href="/A236327/a236327.pdf">Illustration of irregular spiral (center points: 1, 2, 3, 4, 5)</a>Pattern 2.
%F Conjecture from _Colin Barker_, Jul 12 2014: (Start)
%F a(n) = a(n-1)+a(n-4)-a(n-5).
%F G.f.: x*(11*x^3+11*x^2+6*x+2) / ((x-1)^2*(x+1)*(x^2+1)). (End)
%o (Small Basic)
%o n =5 'center points number 1<=n<=9
%o pt=1 'pattern1: pt=-1; pattern2: pt=1
%o i=12345 'center points order
%o rota=100 'rotations
%o sum=0
%o rc=1
%o r[1]=1
%o For i1 = 1 To n
%o d1=i/Math.Power(10,1)
%o i=math.Floor(d1)
%o d[i1]=(d1-i)*Math.Power(10,1)
%o EndFor
%o For j1=1 To n
%o For j2=1 To n
%o If d[j1]=j2 Then
%o dd[j2]=j1
%o endif
%o EndFor
%o EndFor
%o For j3=1 To n
%o If j3=n Then
%o dxy[j3]=dd[j3]-dd[1]
%o Else
%o dxy[j3]=dd[j3]-dd[j3+1]
%o EndIf
%o EndFor
%o For k1=1 To rota*n
%o cc=Math.Floor((k1-1)/n)
%o p[k1]=r[k1]+pt*dxy[k1-cc*n]*Math.Power(-1,Math.Remainder(k1,2))
%o r[k1+1]=p[k1]
%o sum=sum+math.Abs(r[k1])
%o If math.Abs(r[k1])>0 Then
%o rc=rc+1
%o EndIf
%o If rc=3 Then
%o TextWindow.Write(sum+", ")
%o rc=1
%o EndIf
%o EndFor
%Y Cf. A014105 (2 center points); A234902, A234903, A234904 (3 center points); A235088, A235089 (4 center points).
%K nonn
%O 1,1
%A _Kival Ngaokrajang_, Jan 22 2014