login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235089
a(n)*Pi is the total length of irregular spiral (center points: 2, 1, 3, 4) after n rotations.
6
3, 10, 13, 20, 23, 30, 33, 40, 43, 50, 53, 60, 63, 70, 73, 80, 83, 90, 93, 100, 103, 110, 113, 120, 123, 130, 133, 140, 143, 150, 153, 160, 163, 170, 173, 180, 183, 190, 193, 200, 203, 210, 213, 220, 223, 230, 233, 240, 243, 250, 253, 260, 263, 270, 273, 280, 283, 290, 293, 300, 303, 310, 313, 320, 323, 330, 333
OFFSET
1,1
COMMENTS
Let points 2, 1, 3 & 4 be placed on a straight line at intervals of 1 unit. At point 1 make a half unit circle then at point 2 make another half circle and maintain continuity of circumferences. Continue using this procedure at point 3, 4, 1, ... and so on. The form is non-expanded loop.
The alternative point order [2, 3, 1, 4] gives the same pattern with reflection, but the sequence will be 2*A047215(n). See illustration in links.
Conjecture: Numbers equivalent 0 or 3 modulo 10. - Ralf Stephan, Jan 13 2014
FORMULA
Conjecture: a(n) = -1+(-1)^n+5*n. a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: x*(7*x+3) / ((x-1)^2*(x+1)). - Colin Barker, Jan 16 2014
PROG
(Small Basic)
a[1]=3
For n = 1 To 100
d1=3
If Math.Remainder(n+1, 2)=0 then
d1=7
EndIf
a[n+1]=a[n]+d1
TextWindow.Write(a[n]+", ")
EndFor
CROSSREFS
Cf. A014105*Pi (total spiral length, 2 inline center points). A234902*Pi, A234903*Pi, A234904*Pi (total spiral length, 3 inline center points).
Conjectured partial sums of A010705.
Sequence in context: A298418 A229205 A229483 * A022122 A042479 A042897
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Jan 03 2014
STATUS
approved