login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199816
G.f.: exp( Sum_{n>=1} A000984(n)*A000172(n)/4 * x^n/n ), which involves central binomial coefficients (A000984) and Franel numbers (A000172).
1
1, 1, 8, 101, 1639, 30665, 630225, 13836981, 319062453, 7640441894, 188534274850, 4767113222750, 122998902095908, 3228067183537455, 85960229675478804, 2317956019913480326, 63193008693741620771, 1739473925024629613227, 48292271242981605779173
OFFSET
0,3
COMMENTS
Sum_{k=0..n} C(n,k)^2 = A000984(n) defines central binomial coefficients.
Sum_{k=0..n} C(n,k)^3 = A000172(n) defines Franel numbers.
Compare to the g.f. of the Catalan numbers (A000108): exp(Sum_{n>=1} A000984(n)/2*x^n/n) and to the g.f. of A166991: exp(Sum_{n>=1} A000172(n)/2*x^n/n).
FORMULA
Convolution 4th power yields A199813.
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 101*x^3 + 1639*x^4 + 30665*x^5 +...
where
log(A(x)) = 1*1*x + 3*5*x^2/2 + 10*28*x^3/3 + 35*173*x^4/4 + 126*1126*x^5/5 + 462*7592*x^6/6 +...+ A000984(n)/2*A000172(n)/2*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, binomial(2*m, m)/2*sum(k=0, m, binomial(m, k)^3)/2*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 11 2011
STATUS
approved