login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} A000984(n)*A000172(n)/4 * x^n/n ), which involves central binomial coefficients (A000984) and Franel numbers (A000172).
1

%I #7 Mar 14 2015 11:41:32

%S 1,1,8,101,1639,30665,630225,13836981,319062453,7640441894,

%T 188534274850,4767113222750,122998902095908,3228067183537455,

%U 85960229675478804,2317956019913480326,63193008693741620771,1739473925024629613227,48292271242981605779173

%N G.f.: exp( Sum_{n>=1} A000984(n)*A000172(n)/4 * x^n/n ), which involves central binomial coefficients (A000984) and Franel numbers (A000172).

%C Sum_{k=0..n} C(n,k)^2 = A000984(n) defines central binomial coefficients.

%C Sum_{k=0..n} C(n,k)^3 = A000172(n) defines Franel numbers.

%C Compare to the g.f. of the Catalan numbers (A000108): exp(Sum_{n>=1} A000984(n)/2*x^n/n) and to the g.f. of A166991: exp(Sum_{n>=1} A000172(n)/2*x^n/n).

%F Convolution 4th power yields A199813.

%e G.f.: A(x) = 1 + x + 8*x^2 + 101*x^3 + 1639*x^4 + 30665*x^5 +...

%e where

%e log(A(x)) = 1*1*x + 3*5*x^2/2 + 10*28*x^3/3 + 35*173*x^4/4 + 126*1126*x^5/5 + 462*7592*x^6/6 +...+ A000984(n)/2*A000172(n)/2*x^n/n +...

%o (PARI) {a(n)=polcoeff(exp(sum(m=1, n, binomial(2*m, m)/2*sum(k=0, m, binomial(m, k)^3)/2*x^m/m)+x*O(x^n)), n)}

%Y Cf. A199813, A166991, A000108, A181418, A000984, A000172.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 11 2011