login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199813
G.f.: exp( Sum_{n>=1} A000984(n)*A000172(n) * x^n/n ), which involves central binomial coefficients (A000984) and Franel numbers (A000172).
2
1, 4, 38, 504, 8249, 154036, 3149326, 68741880, 1576163328, 37548785408, 922252542128, 23222906277952, 596981991939677, 15616173859832740, 414621835401615110, 11150969618415168280, 303278916800906999191, 8330190277527648516572, 230814933905555392525290
OFFSET
0,2
COMMENTS
Sum_{k=0..n} C(n,k)^2 = A000984(n) defines central binomial coefficients.
Sum_{k=0..n} C(n,k)^3 = A000172(n) defines Franel numbers.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 38*x^2 + 504*x^3 + 8249*x^4 + 154036*x^5 +...
where
log(A(x)) = 2*2*x + 6*10*x^2/2 + 20*56*x^3/3 + 70*346*x^4/4 + 252*2252*x^5/5 + 924*15184*x^6/6 +...+ A000984(n)*A000172(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, binomial(2*m, m)*sum(k=0, m, binomial(m, k)^3)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 10 2011
STATUS
approved