login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302870
Expansion of e.g.f. 1 / Sum_{n >= 0} (n+1)^3*x^n/n!.
4
1, -8, 101, -1840, 44441, -1340696, 48530653, -2049479216, 98915010545, -5370730092136, 324012625790741, -21502216185516848, 1556657523678767881, -122085765970981019000, 10311495889448094131981, -933128678308256836233136, 90072066063382006331898593
OFFSET
0,2
COMMENTS
From Vaclav Kotesovec, Apr 15 2018: (Start)
In general, for m>=0, Sum_{k>=0} (k+1)^m * x^k / k! = exp(x) * Sum_{j = 1..m+1} Stirling2(m+1, j) * x^(j-1).
If m tends to infinity, then the real root of the equation Sum_{j = 1..m+1} Stirling2(m + 1, j) * x^(j-1) = 0, with a minimal absolute value, tends to -1/2^m.
(End)
LINKS
FORMULA
From Vaclav Kotesovec, Apr 15 2018: (Start)
E.g.f: exp(-x)/(1 + 7*x + 6*x^2 + x^3).
a(n) ~ (-1)^n * n! * (371 + 414*r + 74*r^2) * exp(-r) * (7 + 6*r + r^2)^n / 257, where r = -0.16575681568607828288437387419... is the real root of the equation 1 + 7*r + 6*r^2 + r^3 = 0.
(End)
MATHEMATICA
nmax = 20; CoefficientList[Series[1/(E^x*((1 + 7*x + 6*x^2 + x^3))), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2018 *)
CROSSREFS
Cf. A302189.
Sequence in context: A291536 A229452 A199816 * A317862 A318551 A307461
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 15 2018
STATUS
approved