login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166991
G.f.: A(x) = exp( Sum_{n>=1} A000172(n)*x^n/(2*n) ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.
6
1, 1, 3, 12, 57, 300, 1693, 10045, 61890, 392688, 2550843, 16891566, 113660475, 775223595, 5349057132, 37280705406, 262119009927, 1857241951359, 13250054817027, 95110710932424, 686490953423700, 4979704242810870
OFFSET
0,3
LINKS
FORMULA
Self-convolution yields A166990.
a(n) ~ c * 8^n / n^2, where c = 0.231776... - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 57*x^4 + 300*x^5 + 1693*x^6 +...
log(A(x)^2) = 2*x + 10*x^2/2 + 56*x^3/3 + 346*x^4/4 + 2252*x^5/5 + 15184*x^6/6 + 104960*x^7/7 +...+ A000172(n)*x^n/n +...
MATHEMATICA
a[n_] := Sum[(Binomial[n, k])^3, {k, 0, n}]; f[x_] := Sum[a[n]*x^n/(2*n), {n, 1, 75}]; CoefficientList[Series[Exp[f[x]], {x, 0, 50}], x] (* G. C. Greubel, May 30 2016 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^3)/2*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A000172 (Franel numbers), A166990, A166993, A218118, A218120.
Sequence in context: A178807 A361844 A047891 * A276366 A243521 A369484
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2009
STATUS
approved