login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180715
E.g.f.: A(x) = Series_Reversion[ x - Sum_{n>=2} (-x)^n/(n(n-1)/2) ].
2
1, 2, 10, 84, 988, 14944, 276288, 6037088, 152213344, 4349539776, 138913306816, 4903586835328, 189581185491072, 7966928227397120, 361586320101395968, 17626603314884699136, 918522989907500809216, 50952388648850059964416, 2997739520942089756839936
OFFSET
1,2
FORMULA
E.g.f. A(x) satisfies:
(1) (1+A(x))*log(1+A(x)) = (3*A(x) - x)/2.
(2) log(1+A(x)) = Series_Reversion[(3-2*x)*exp(x) - 3].
(3) Let B(x) = 1+A(x), then: B(x) = exp( B(x)^2 * Integral 1/B(x)^3 dx ). - Paul D. Hanna, Dec 06 2013
a(n) ~ n^(n-1) / (sqrt(2) * exp(n-1/4) * (2*exp(1/2)-3)^(n-1/2)). - Vaclav Kotesovec, Dec 07 2013
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 84*x^4/4! + 988*x^5/5! + ...
Series reversion of the e.g.f. A(x) begins:
x - x^2 + x^3/3 - x^4/6 + x^5/10 - x^6/15 + x^7/21 - x^8/28 +- ...
Series reversion of log(1+A(x)) begins:
x - x^2/2! - 3*x^3/3! - 5*x^4/4! - 7*x^5/5! - 9*x^6/6! - 11*x^7/7! - ...
MAPLE
series(exp(LambertW(-exp(-3/2)*(3+x)/2)+3/2)-1, x, 31): A:=simplify(%, symbolic): A180715:=n->n!*coeff(A, x, n): # Vladeta Jovovic, Sep 28 2010
PROG
(PARI) a(n)=if(n<1, 0, n!*polcoeff(serreverse(x-sum(k=2, n, (-x)^k*2/(k*(k-1)))+x*O(x^n)), n))
for(n=1, 25, print1(a(n), ", "))
(PARI) a(n)=if(n<1, 0, n!*polcoeff(exp(serreverse((3-2*x)*exp(x+x*O(x^n))-3))-1, n))
for(n=1, 25, print1(a(n), ", "))
(PARI) a(n)=local(B=1+x); for(i=1, n, B=exp(B^2*intformal(1/B^3+x*O(x^n)))); n!*polcoeff(B-1, n)
for(n=1, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 06 2013
CROSSREFS
Sequence in context: A244627 A113332 A321398 * A107863 A065866 A322406
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 24 2010
STATUS
approved