login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321398
a(n) = (-1)^(n+1)*n!* [x^n](log(x + 1)/2 + log(3*x + 1)/6).
2
0, 1, 2, 10, 84, 984, 14640, 262800, 5513760, 132289920, 3571464960, 107140320000, 3535590643200, 127280784153600, 4963944354969600, 208485575730432000, 9381849600195072000, 450328759886573568000, 22966766398527823872000, 1240205379118128783360000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: -log(1 - x)/2 - log(1 - 3*x)/6. - Andrew Howroyd, Nov 10 2018
3*n*(n+1)*a(n)-4*(n+1)*a(n)+a(n+2)=0. - Robert Israel, Nov 10 2018
MAPLE
ser := series(ln(x+1)/2 + ln(1+3*x)/6, x, 21):
seq((-1)^(n+1)*n!*coeff(ser, x, n), n=0..19);
MATHEMATICA
CoefficientList[Series[Log[x+1]/2 + Log[1+3*x]/6, {x, 0, 50}], x]* Table[(-1)^(n+1)*n!, {n, 0, 50}] (* Stefano Spezia, Nov 10 2018 *)
PROG
(PARI) seq(n)={Vec(serlaplace(-log(1 - x + O(x^n))/2 - log(1 - 3*x + O(x^n))/6), -n)} \\ Andrew Howroyd, Nov 10 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( -Log((1-x)^3*(1-3*x))/6 )); [0] cat [Factorial(n-0)*b[n]: n in [1..(m-1)]]; // G. C. Greubel, Nov 11 2018
CROSSREFS
Cf. A133942 (n=1), A000165 (n=2), this sequence (n=3), A320962 (limit).
Sequence in context: A250117 A244627 A113332 * A180715 A107863 A065866
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 10 2018
STATUS
approved