login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107863
Column 1 of triangle A107862; a(n) = binomial(n*(n+1)/2 + n, n).
4
1, 2, 10, 84, 1001, 15504, 296010, 6724520, 177232627, 5317936260, 179013799328, 6681687099710, 273897571557780, 12233149001721760, 591315394579074378, 30756373941461374800, 1712879663609111933495, 101696990867999141755140
OFFSET
0,2
FORMULA
a(n) = [x^(n*(n+1)/2)] 1/(1 - x)^(n+1). - Ilya Gutkovskiy, Oct 10 2017
From Peter Bala, Feb 23 2020: (Start)
Put b(n) = a(n-1). We have the congruences:
b(p) == 1 (mod p^3) for prime p >= 5 (uses Mestrovic, equation 35);
b(2*p) == 2*p (mod p^4) for prime p >= 5 (uses Mestrovic, equation 44 and the von Staudt-Clausen theorem).
Conjectural congruences:
b(3*p) == (81*p*2 - 1)/8 (mod p^3) for prime p >= 3;
3*b(4*p) == -4*p (mod p^3) for all prime p. Cf. A135860 and A135861. (End)
MATHEMATICA
Table[Binomial[n*(n+3)/2, n], {n, 0, 40}] (* G. C. Greubel, Feb 19 2022 *)
PROG
(PARI) a(n)=binomial(n*(n+1)/2+n, n)
(Sage) [binomial(n*(n+3)/2, n) for n in (0..40)] # G. C. Greubel, Feb 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 04 2005
STATUS
approved