login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180718
G.f.: exp( Sum_{n>=0} [ Sum_{k=0..n} C(n,k)^2*x^k ]^2* x^n/n ).
7
1, 1, 3, 8, 25, 80, 271, 952, 3443, 12758, 48212, 185283, 722227, 2849955, 11366379, 45757142, 185726603, 759401542, 3125472832, 12939604503, 53856950922, 225250407802, 946253665230, 3991221520996, 16897320866269, 71782331694315
OFFSET
0,3
COMMENTS
Compare the g.f. of this sequence to the g.f.s:
. exp( Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k]*x^n/n ) = (G(x)-1)/x where G(x) = g.f. of A004148.
. exp( Sum_{n>=0} [Sum_{k=0..n} C(n,k)*x^k]^2*x^n/n ) = 1/(1-x*(1+x)^2).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 25*x^4 + 80*x^5 + 271*x^6 +...
The logarithm (A180719) begins:
log(A(x)) = x + 5*x^2/2 + 16*x^3/3 + 61*x^4/4 + 226*x^5/5 + 884*x^6/6 + 3543*x^7/7 + 14429*x^8/8 +...
which equals the sum of the series:
log(A(x)) = (1 + x)^2*x
+ (1 + 4*x + x^2)^2*x^2/2
+ (1 + 9*x + 9*x^2 + x^3)^2*x^3/3
+ (1 + 16*x + 36*x^2 + 16*x^3 + x^4)^2*x^4/4
+ (1 + 25*x + 100*x^2 + 100*x^3 + 25*x^4 + x^5)^2*x^5/5
+ (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)^2*x^6/6 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^2*x^k)^2*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Sequence in context: A289593 A101490 A148793 * A318226 A197159 A161634
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 24 2010
STATUS
approved