login
A132375
Expansion of c(8*x^2)/(1 - x*c(8*x^2)), where c(x) is the g.f. of A000108.
3
1, 1, 9, 17, 153, 353, 3177, 8113, 73017, 198401, 1785609, 5060433, 45543897, 133071009, 1197639081, 3581326065, 32231934585, 98156060225, 883404542025, 2730108129937, 24570973169433, 76862217117665, 691759954058985
OFFSET
0,3
COMMENTS
Hankel transform is 8^C(n+1, 2).
Series reversion of x*(1+x)/(1+2*x+9*x^2).
LINKS
FORMULA
a(n) = Sum_{k=0..n} A120730(n,k) * 8^(n-k).
From G. C. Greubel, Nov 08 2022: (Start)
a(n) = (9*(n+1)*a(n-1) + 32*(n-2)*a(n-2) - 288*(n-2)*a(n-3))/(n+1).
G.f.: (1 - sqrt(1-32*x^2))/(16*x^2 - x*(1 - sqrt(1-32*x^2))). (End)
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-32*x^2])/(16*x^2-x*(1-Sqrt[1-32*x^2])), {x, 0, 40}], x] (* G. C. Greubel, Nov 08 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-32*x^2))/(16*x^2 -x*(1-Sqrt(1-32*x^2))) )); // G. C. Greubel, Nov 08 2022
(SageMath)
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A132375(n): return sum(8^(n-k)*A120730(n, k) for k in range(n+1))
[A132375(n) for n in range(51)] # G. C. Greubel, Nov 08 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Nov 10 2007
STATUS
approved