login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128386
Expansion of c(3*x^2)/(1-x*c(3*x^2)), c(x) the g.f. of A000108.
6
1, 1, 4, 7, 28, 58, 232, 523, 2092, 4966, 19864, 48838, 195352, 492724, 1970896, 5068915, 20275660, 52955950, 211823800, 560198962, 2240795848, 5987822380, 23951289520, 64563867454, 258255469816, 701383563388, 2805534253552
OFFSET
0,3
COMMENTS
Hankel transform is 3^C(n+1,2) = A047656(n+1).
Series reversion of x*(1+x)/(1+2*x+4*x^2).
LINKS
Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Slides, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
FORMULA
G.f.: (sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)).
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n+j)*2^(2*k-j).
a(n) = Sum_{k=0..floor(n/2)} C(n,n-k)*(n-2*k+1)*3^k/(n-k+1);
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*3^k.
a(n) = Sum_{k=0..n} 3^k*A120730(n,n-k). - Philippe Deléham, Mar 03 2007
D-finite with recurrence (n+1)*a(n) - 4*(n+1)*a(n-1) + 12*(2-n)*a(n-2) + 48*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 14 2011
MATHEMATICA
A120730[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
A126386[n_]:= Sum[3^k*A120730[n, n-k], {k, 0, n}];
Table[A126386[n], {n, 0, 50}] (* G. C. Greubel, Nov 07 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)) )); // G. C. Greubel, Nov 07 2022
(SageMath)
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A126386(n): return sum(3^k*A120730(n, n-k) for k in range(n+1))
[A126386(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 28 2007
STATUS
approved