login
A132373
Expansion of c(6*x^2)/(1-x*c(6*x^2)), where c(x) is the g.f. of A000108.
3
1, 1, 7, 13, 91, 205, 1435, 3565, 24955, 65821, 460747, 1265677, 8859739, 25066621, 175466347, 507709165, 3553964155, 10466643805, 73266506635, 218878998733, 1532152991131, 4631531585341, 32420721097387, 98980721277613, 692865048943291, 2133274258946845
OFFSET
0,3
COMMENTS
Hankel transform is 6^C(n+1, 2).
Series reversion of (1+x)/(1 + 2*x + 7*x^2). [Corrected by R. J. Mathar, Nov 19 2009]
LINKS
FORMULA
a(n) = Sum_{k=0..n} A120730(n,k) * 6^(n-k).
From G. C. Greubel, Nov 07 2022: (Start)
G.f.: (1 - sqrt(1-24*x^2))/(12*x^2 - x*(1 - sqrt(1-24*x^2))).
a(n) = ( 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3) )/(n+1). (End)
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-24*x^2])/(12*x^2 -x*(1-Sqrt[1-24*x^2])), {x, 0, 40}], x] (* G. C. Greubel, Nov 07 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-24*x^2))/(12*x^2-x*(1-Sqrt(1-24*x^2))) )); // G. C. Greubel, Nov 07 2022
(SageMath)
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A132373(n): return sum(6^(n-k)*A120730(n, k) for k in range(n+1))
[A132373(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Nov 10 2007
EXTENSIONS
Terms beyond a(7) added by R. J. Mathar, Nov 19 2009
STATUS
approved