login
A132374
Expansion of c(7*x^2)/(1 - x*c(7*x^2)), where c(x) is the g.f. of A000108.
10
1, 1, 8, 15, 120, 274, 2192, 5531, 44248, 118686, 949488, 2654646, 21237168, 61189668, 489517344, 1443039123, 11544312984, 34648845862, 277190766896, 844131474530, 6753051796240, 20813234394492, 166505875155936, 518373091849502
OFFSET
0,3
COMMENTS
Hankel transform is 7^C(n+1,2).
Series reversion of x*(1+x)*(1+2*x+8*x^2).
LINKS
FORMULA
a(n) = Sum_{k=0..n} A120730(n,k) * 7^(n-k).
From G. C. Greubel, Nov 08 2022: (Start)
a(n) = 4*( 2*(n+1)*a(n-1) + 7*(n-2)*a(n-2) - 56*(n-2)*a(n-3) )/(n+1).
G.f.: (1 - sqrt(1 - 28*x^2))/(14*x^2 - x*(1 - sqrt(1 - 28*x^2))). (End)
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-28*x^2])/(14*x^2 -x*(1-Sqrt[1-28*x^2])), {x, 0, 40}], x] (* G. C. Greubel, Nov 08 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-28*x^2))/(14*x^2 -x*(1-Sqrt(1-28*x^2))) )); // G. C. Greubel, Nov 08 2022
(SageMath)
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
def A132374(n): return sum(7^(n-k)*A120730(n, k) for k in range(n+1))
[A132374(n) for n in range(51)] # G. C. Greubel, Nov 08 2022
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Nov 10 2007
STATUS
approved