login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127975
Repeat 3^n three times.
6
1, 1, 1, 3, 3, 3, 9, 9, 9, 27, 27, 27, 81, 81, 81, 243, 243, 243, 729, 729, 729, 2187, 2187, 2187, 6561, 6561, 6561, 19683, 19683, 19683, 59049, 59049, 59049, 177147, 177147, 177147, 531441, 531441, 531441, 1594323, 1594323, 1594323, 4782969, 4782969, 4782969
OFFSET
0,4
COMMENTS
a(n) is the number of functions f:[n+1]->[3] with f(1)=1 and with f(x)=f(y) whenever y=ceiling(x/3). - Dennis P. Walsh, Sep 06 2018
FORMULA
G.f.: (1+x+x^2)/(1-3*x^3).
EXAMPLE
a(6)=9 since there are exactly 9 functions f:[7]->[3], denoted by <f(1),f(2),...,f(7)>, with f(1)=1 and with f(x)=f(y) whenever y=ceiling(x/3). The nine functions are <1,1,1,1,1,1,1>, <1,1,1,1,1,1,2>, <1,1,1,1,1,1,3>, <1,1,1,2,2,2,1>, <1,1,1,2,2,2,2>, <1,1,1,2,2,2,3>, <1,1,1,3,3,3,1>, <1,1,1,3,3,3,2>, and <1,1,1,3,3,3,3>. - Dennis P. Walsh, Sep 06 2018
MAPLE
seq(3^floor(n/3), n=0..45); # Dennis P. Walsh, Sep 06 2018
MATHEMATICA
CoefficientList[Series[(1+x+x^2)/(1-3*x^3), {x, 0, 50}], x] (* or *) Table[3^(Floor[n/3]), {n, 0, 50}] (* G. C. Greubel, Apr 30 2017 *)
PROG
(Magma) [3^(Floor(n/3)):n in [0..50]]; // Vincenzo Librandi, Sep 20 2011
(PARI) a(n)=3^(n\3) \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
Sequence in context: A132171 A304682 A217645 * A060828 A332337 A161808
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 09 2007
EXTENSIONS
Edited and corrected by R. J. Mathar, Jun 14 2008
STATUS
approved