login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Repeat 3^n three times.
6

%I #28 Feb 26 2024 01:59:03

%S 1,1,1,3,3,3,9,9,9,27,27,27,81,81,81,243,243,243,729,729,729,2187,

%T 2187,2187,6561,6561,6561,19683,19683,19683,59049,59049,59049,177147,

%U 177147,177147,531441,531441,531441,1594323,1594323,1594323,4782969,4782969,4782969

%N Repeat 3^n three times.

%C a(n) is the number of functions f:[n+1]->[3] with f(1)=1 and with f(x)=f(y) whenever y=ceiling(x/3). - _Dennis P. Walsh_, Sep 06 2018

%H Vincenzo Librandi, <a href="/A127975/b127975.txt">Table of n, a(n) for n = 0..6000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3).

%F G.f.: (1+x+x^2)/(1-3*x^3).

%e a(6)=9 since there are exactly 9 functions f:[7]->[3], denoted by <f(1),f(2),...,f(7)>, with f(1)=1 and with f(x)=f(y) whenever y=ceiling(x/3). The nine functions are <1,1,1,1,1,1,1>, <1,1,1,1,1,1,2>, <1,1,1,1,1,1,3>, <1,1,1,2,2,2,1>, <1,1,1,2,2,2,2>, <1,1,1,2,2,2,3>, <1,1,1,3,3,3,1>, <1,1,1,3,3,3,2>, and <1,1,1,3,3,3,3>. - _Dennis P. Walsh_, Sep 06 2018

%p seq(3^floor(n/3),n=0..45); # _Dennis P. Walsh_, Sep 06 2018

%t CoefficientList[Series[(1+x+x^2)/(1-3*x^3), {x,0,50}], x] (* or *) Table[3^(Floor[n/3]), {n,0,50}] (* _G. C. Greubel_, Apr 30 2017 *)

%o (Magma) [3^(Floor(n/3)):n in [0..50]]; // _Vincenzo Librandi_, Sep 20 2011

%o (PARI) a(n)=3^(n\3) \\ _Charles R Greathouse IV_, Oct 03 2016

%Y Cf. A108411, A111575.

%K nonn,easy

%O 0,4

%A _Paul Barry_, Feb 09 2007

%E Edited and corrected by _R. J. Mathar_, Jun 14 2008