login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127977
The minimum excess in the prime race of odious primes versus evil primes in the interval (2^(n-1),2^n).
1
0, 1, 4, 7, 13, 19, 39, 53, 104, 138, 251, 334, 590, 715, 1353, 1855, 3659, 5221, 10484, 14933, 27491, 35474, 68816, 97342, 186405, 265255
OFFSET
5,3
COMMENTS
Shevelev conjectures (p.2) that for all natural numbers n other than 5 and 6, the number of evil primes not exceeding n <= the number of odious primes not exceeding n. Odious primes are A027697. Evil primes are A027699.
LINKS
Vladimir Shevelev, A Conjecture on Primes and a Step towards Justification, arXiv:0706.0786 [math.NT], 2007. See table 1, p. 2.
Vladimir Shevelev, On excess of the odious primes, arXiv:0707.1761 [math.NT], 2007.
EXAMPLE
OdiPrimePi(x) for x >= 32 is 6, 6, 6, 6, 6, 7, 7, 7, 7, 8,.. and EviPrimePi(x) for x>=32 is 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6,...
The difference OdiPrimePi(x)-EviPrimePi(x) is 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3,.. so the minimum of the difference in the interval 2^(6-1)..2^6 is 1, yielding a(6)=1.
MAPLE
read("transforms") ; # see oeis.org/transforms.txt
isA000069 := proc(n) type(wt(n), 'odd') ; end proc;
isA027697 := proc(n) isprime(n) and isA000069(n) ; end proc:
isA027699 := proc(n) isprime(n) and not isA000069(n) ; end proc:
odiPi := proc(n) option remember; if n = 0 then 0; else an1 := procname(n-1) ; if isA027697(n) then an1+1 ; else an1 ; end if; end if; end proc:
eviPi := proc(n) option remember; if n = 0 then 0; else an1 := procname(n-1) ; if isA027699(n) then an1+1 ; else an1 ; end if; end if; end proc:
oddPi := proc(n) odiPi(n)-eviPi(n) ; end proc:
A127977 := proc(n) local a, x ; a := 2^(n+1) ; for x from 2^(n-1)+1 to 2^n-1 do a := min(a, oddPi(x)) ; end do: a; end proc:
for n from 5 do print(n, A127977(n)) ; end do; # R. J. Mathar, Sep 03 2011
MATHEMATICA
wt[n_] := DigitCount[n, 2, 1];
isA000069[n_] := OddQ[wt[n]];
isA027697[n_] := PrimeQ[n] && isA000069[n];
isA027699[n_] := PrimeQ[n] && !isA000069[n];
odiPi[n_] := odiPi[n] = If[n==0, 0, an1 = odiPi[n-1]; If[isA027697[n], an1+1, an1]];
eviPi[n_] := eviPi[n] = If[n==0, 0, an1 = eviPi[n-1]; If[isA027699[n], an1+1, an1]];
oddPi[n_] := odiPi[n] - eviPi[n];
A127977[n_] := Module[{a, x}, a = 2^(n+1); For[x = 2^(n-1)+1, x <= 2^n-1, x++, a = Min[a, oddPi[x]]]; a];
Table[an = A127977[n]; Print[an]; an, {n, 5, 30}] (* Jean-François Alcover, Jan 23 2018, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jonathan Vos Post, Jun 07 2007
EXTENSIONS
Published numbers corrected and checked up to n=23 by R. J. Mathar, Sep 03 2011
STATUS
approved