login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132171
3^n repeated 3^n times.
3
1, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81
OFFSET
0,2
LINKS
FORMULA
From Robert Israel, Feb 24 2017: (Start)
a(n) = 3^floor(log_3(2n+1)).
a(3*n+1) = a(3*n+2) = a(3*n+3) = 3*a(n).
G.f.: (1-x)^(-1)*Sum_{m>=1} (3^m-3^(m-1))*x^((3^m-1)/2).
(End)
Sum_{n>=0} 1/a(n)^2 = 3/2. - Amiram Eldar, Aug 16 2022
MAPLE
seq((3^n)$(3^n), n=0..5); # Robert Israel, Feb 24 2017
MATHEMATICA
Table[ConstantArray[3^n, 3^n], {n, 0, 4}] // Flatten (* or *)
Table[3^Floor@ Log[3, 2 n + 1], {n, 0, 81}] (* Michael De Vlieger, Feb 24 2017 *)
PROG
(Haskell)
import Data.List (transpose)
a132171 n = genericIndex a132171_list n
a132171_list = 1 : zs where
zs = 3 : 3 : 3 : (map (* 3) $ concat $ transpose [zs, zs, zs])
-- Reinhard Zumkeller, Sep 01 2015
(Python)
from sympy import integer_log
def A132171(n): return 3**integer_log((n<<1)+1, 3)[0] # Chai Wah Wu, Nov 04 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Nov 04 2007
STATUS
approved