login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060828
Size of the Sylow 3-subgroup of the symmetric group S_n.
12
1, 1, 1, 3, 3, 3, 9, 9, 9, 81, 81, 81, 243, 243, 243, 729, 729, 729, 6561, 6561, 6561, 19683, 19683, 19683, 59049, 59049, 59049, 1594323, 1594323, 1594323, 4782969, 4782969, 4782969, 14348907, 14348907, 14348907, 129140163, 129140163, 129140163, 387420489
OFFSET
0,4
LINKS
Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
FORMULA
a(n) = 3^A054861(n) = 3^(floor(n/3) + floor(n/9) + floor(n/27) + floor(n/81) + ...).
a(n) = Product_{i=1..n} A038500(i). - Tom Edgar, Apr 30 2014
a(n) = 3^(n/2 + O(log n)). - Charles R Greathouse IV, Aug 05 2015
EXAMPLE
a(3) = 3 because in S_3 the Sylow 3-subgroup is the subgroup generated by the 3-cycles (123) and (132), its order is 3.
MATHEMATICA
(* By the formula: *) Table[3^IntegerExponent[n!, 3], {n, 0, 40}] (* Bruno Berselli, Aug 05 2013 *)
PROG
(PARI) for (n=0, 200, s=0; d=3; while (n>=d, s+=n\d; d*=3); write("b060828.txt", n, " ", 3^s)) \\ Harry J. Smith, Jul 12 2009
(Sage)
def A060828(n):
A004128 = lambda n: A004128(n//3) + n if n > 0 else 0
return 3^A004128(n//3)
[A060828(i) for i in (0..39)] # Peter Luschny, Nov 16 2012
CROSSREFS
Sequence in context: A304682 A217645 A127975 * A332337 A161808 A188344
KEYWORD
nonn,easy
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
EXTENSIONS
More terms from N. J. A. Sloane, Jul 03 2008
STATUS
approved