login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077438
Numbers k such that Sum_{d|k} mu(d) mu(n/d)^2 = -1.
2
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 900, 961, 1369, 1681, 1764, 1849, 2209, 2809, 3481, 3721, 4356, 4489, 4900, 5041, 5329, 6084, 6241, 6889, 7921, 9409, 10201, 10404, 10609, 11025, 11449, 11881, 12100, 12769, 12996, 16129, 16900
OFFSET
1,1
COMMENTS
From Robert G. Wilson v, Dec 28 2016: (Start)
Union of {A000040, A007304, A046387, A123321, A115343, etc}^2 = Union of {A001248, A162143, etc} = A030059(n)^2.
Number of terms < 10^k: 2, 4, 12, 30, 98, 303, 957, ..., . (End)
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..1000 (first 800 terms from G. C. Greubel)
FORMULA
a(n) = A030059(n)^2.
From Amiram Eldar, Jun 16 2020: (Start)
Sum_{k>=1} 1/a(k) = 9/(2*Pi^2) = A088245.
Sum_{k>=1} 1/a(k)^2 = 15/(2*Pi^4). (End)
MATHEMATICA
fQ[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[#] MoebiusMu[n/#]^2 & /@ d) == -1]; Select[Range@17000, fQ] (* Robert G. Wilson v, Dec 28 2016 *)
PROG
(PARI) isok(n) = sumdiv(n, d, moebius(d)*moebius(n/d)^2) == -1; \\ Michel Marcus, Nov 08 2013
(PARI) is(n)=if(!issquare(n, &n), return(0)); my(f=factor(n)[, 2]); #f%2 && vecmax(f)==1 \\ Charles R Greathouse IV, Oct 16 2015
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 30 2002
STATUS
approved