login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179707
Semiprimes p*q such that 2^p mod q == 2^q mod p.
3
4, 9, 25, 49, 121, 169, 289, 341, 361, 529, 731, 841, 961, 1333, 1369, 1387, 1681, 1727, 1849, 2047, 2209, 2701, 2809, 3277, 3481, 3503, 3721, 3763, 4033, 4369, 4489, 4681, 5041, 5329, 5461, 6241, 6889, 7921, 7957, 8321, 9409, 9509, 10201, 10261, 10609, 10669, 11449, 11881
OFFSET
1,1
COMMENTS
The square of every prime is here, as are the semiprimes in A179839.
LINKS
EXAMPLE
341 is a term because 341 = 11*31 and 2^11 mod 31 = 2^31 mod 11.
MATHEMATICA
fQ[n_] := Block[{fi = Flatten[ Table[ First@ #, {Last@ #}] & /@ FactorInteger@ n]}, Length@ fi == 2 && PowerMod[2, fi[[2]], fi[[1]]] == PowerMod[2, fi[[1]], fi[[2]]]]; Select[ Range@ 12000, fQ]
With[{nn=50}, Take[Union[Times@@@Select[Tuples[Prime[Range[2nn]], 2], PowerMod[ 2, #[[1]], #[[2]]]==PowerMod[2, #[[2]], #[[1]]]&]], nn]] (* Harvey P. Dale, Sep 03 2015 *)
CROSSREFS
Sequence in context: A082180 A246131 A068999 * A247078 A077438 A350343
KEYWORD
nonn
AUTHOR
STATUS
approved