Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Jun 16 2020 05:35:19
%S 4,9,25,49,121,169,289,361,529,841,900,961,1369,1681,1764,1849,2209,
%T 2809,3481,3721,4356,4489,4900,5041,5329,6084,6241,6889,7921,9409,
%U 10201,10404,10609,11025,11449,11881,12100,12769,12996,16129,16900
%N Numbers k such that Sum_{d|k} mu(d) mu(n/d)^2 = -1.
%C From _Robert G. Wilson v_, Dec 28 2016: (Start)
%C Union of {A000040, A007304, A046387, A123321, A115343, etc}^2 = Union of {A001248, A162143, etc} = A030059(n)^2.
%C Number of terms < 10^k: 2, 4, 12, 30, 98, 303, 957, ..., . (End)
%H Robert G. Wilson v, <a href="/A077438/b077438.txt">Table of n, a(n) for n = 1..1000</a> (first 800 terms from G. C. Greubel)
%F a(n) = A030059(n)^2.
%F From _Amiram Eldar_, Jun 16 2020: (Start)
%F Sum_{k>=1} 1/a(k) = 9/(2*Pi^2) = A088245.
%F Sum_{k>=1} 1/a(k)^2 = 15/(2*Pi^4). (End)
%t fQ[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[#] MoebiusMu[n/#]^2 & /@ d) == -1]; Select[Range@17000, fQ] (* _Robert G. Wilson v_, Dec 28 2016 *)
%o (PARI) isok(n) = sumdiv(n, d, moebius(d)*moebius(n/d)^2) == -1; \\ _Michel Marcus_, Nov 08 2013
%o (PARI) is(n)=if(!issquare(n,&n), return(0)); my(f=factor(n)[,2]); #f%2 && vecmax(f)==1 \\ _Charles R Greathouse IV_, Oct 16 2015
%Y Cf. A000040, A001248, A007304, A030059, A046387, A088245, A115343, A123321, A162143.
%K nonn
%O 1,1
%A _Benoit Cloitre_, Nov 30 2002