login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077440
Squares and their roots having square decimal digits.
2
0, 1, 100, 10000, 1000000, 1100401, 100000000, 110040100, 10000000000, 10100049001, 11004010000, 1000000000000, 1010004900100, 1100401000000, 100000000000000, 100100004990001, 101000490010000, 110040100000000
OFFSET
1,3
COMMENTS
If k is a term, then so is 100 * k. - Robert Israel, Aug 26 2024
LINKS
EXAMPLE
a(6) = 1100401 = 1049^2.
A019544(8)=441 is not a term, as 441=21^2 and 2 is not a square digit.
MAPLE
N:= 30: # for terms of up to 2*N digits
R:= {1}: T:= {1, 9}:
for d from 2 to N do
T:= select(t -> convert(convert(t^2 mod 10^d, base, 10), set) subset {0, 1, 4, 9}, map(t -> (t, t + 10^(d-1), t + 4*10^(d-1), t + 9*10^(d-1)), T));
R:= R union select(t -> convert(convert(t^2, base, 10), set) subset {0, 1, 4, 9}, T);
od:
R2:= map(t -> t^2, R):
Res:= map(t -> seq(t*10^(2*i), i=0..(2*N-ilog10(t)-1)/2), R2) union {0}:
sort(convert(Res, list)); # Robert Israel, Aug 26 2024
MATHEMATICA
a = {}; Do[d = FromDigits[ ReplaceAll[ IntegerDigits[n, 4], {3 -> 9, 2 -> 4}]]; If[ Union[ Join[ IntegerDigits[d^2], {0, 1, 4, 9}]] == {0, 1, 4, 9}, a = Append[a, d^2]], {n, 0, 3*10^4}]; a
CROSSREFS
a(n) = A077439(n)^2.
Sequence in context: A192937 A029798 A029775 * A181412 A029794 A029801
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Nov 06 2002
EXTENSIONS
Edited by Robert G. Wilson v, Nov 08 2002
STATUS
approved