login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068999
Numbers k such that k = (sum of distinct prime factors of k)*(product of distinct prime factors of k).
2
4, 9, 25, 49, 121, 169, 289, 300, 361, 504, 529, 841, 961, 980, 1056, 1369, 1404, 1575, 1681, 1849, 2209, 2600, 2736, 2809, 3481, 3721, 4489, 4851, 5041, 5329, 6241, 6375, 6696, 6889, 7436, 7448, 7695, 7921, 9409, 9639, 10201, 10304, 10609, 11375, 11449
OFFSET
1,1
COMMENTS
Contains all squares of primes (A001248).
Terms that are not squares of primes: 300, 504, 980, 1056, 1404, 1575, 2600, 2736, 4851, 6375, 6696, 7436, 7448, 7695, 9639, 10304, 11375, 11583, 12384, 13376, 13770, 14144, 19250, 20691, 21500, 22656, 24548, 24975, 28175, 28944, 30008, 34983, 36848, 37026, 50024, 58400, 63455, ... - Alex Ratushnyak, Aug 17 2012
LINKS
EXAMPLE
The prime factors of 300 are 2, 3, 5, the sum and product of which are 10, 30 respectively, which multiply to 300. Hence 300 belongs to the sequence.
MATHEMATICA
h[n_] := Module[{a, l }, a = FactorInteger[n]; l = Length[a]; Sum[a[[i]][[1]], {i, 1, l}]*Product[a[[i]][[1] ], {i, 1, l}] == n]; Select[Range[2, 10^4], h[ # ] &]
pf[n_] := First /@ FactorInteger[n]; Select[Range[11500], (Plus @@ pf[ # ])*(Times @@ pf[ # ]) == # &] (* Ray Chandler, Nov 14 2005 *)
PROG
(Python)
from sympy import primerange
import math
primes = list(primerange(2, 10000))
for n in range(1, 10000):
d = n
sum = 0
product = 1
for p in primes:
if d%p==0:
sum += p
product *= p
while d%p==0:
d//=p
if d==1:
break
if sum*product==n:
print(n, end=', ')
# Alex Ratushnyak, Aug 18 2012
(Python)
from math import prod
from sympy import primefactors
def ok(n): pf = primefactors(n); return n == sum(pf)*prod(pf)
print(list(filter(ok, range(1, 11600)))) # Michael S. Branicky, May 15 2021
CROSSREFS
Sequence in context: A372743 A082180 A246131 * A179707 A247078 A077438
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Mar 20 2002
EXTENSIONS
Extended by Ray Chandler, Nov 14 2005
STATUS
approved