login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047575
Numbers that are congruent to {0, 5, 6, 7} mod 8.
1
0, 5, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24, 29, 30, 31, 32, 37, 38, 39, 40, 45, 46, 47, 48, 53, 54, 55, 56, 61, 62, 63, 64, 69, 70, 71, 72, 77, 78, 79, 80, 85, 86, 87, 88, 93, 94, 95, 96, 101, 102, 103, 104, 109, 110, 111, 112, 117, 118, 119, 120, 125
OFFSET
1,2
FORMULA
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x^2*(5+x+x^2+x^3) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (4*n-1+i^(2*n)-(1+i)*i^(-n)-(1-i)*i^n)/2 where i=sqrt(-1).
a(2k) = A047550(k), a(2k-1) = A047451(k). (End)
E.g.f.: 1 - sin(x) - cos(x) - sinh(x) + 2*x*exp(x). - Ilya Gutkovskiy, May 30 2016
Sum_{n>=2} (-1)^n/a(n) = 5*log(2)/8 - (2*sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 23 2021
MAPLE
A047575:=n->(4*n-1+I^(2*n)-(1+I)*I^(-n)-(1-I)*I^n)/2: seq(A047575(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
MATHEMATICA
Select[Range[0, 120], MemberQ[{0, 5, 6, 7}, Mod[#, 8]]&] (* Harvey P. Dale, Jun 30 2011 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 5, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
Sequence in context: A080703 A284682 A171405 * A014097 A219331 A229862
KEYWORD
nonn,easy
STATUS
approved