login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047578
Numbers that are congruent to {2, 5, 6, 7} mod 8.
4
2, 5, 6, 7, 10, 13, 14, 15, 18, 21, 22, 23, 26, 29, 30, 31, 34, 37, 38, 39, 42, 45, 46, 47, 50, 53, 54, 55, 58, 61, 62, 63, 66, 69, 70, 71, 74, 77, 78, 79, 82, 85, 86, 87, 90, 93, 94, 95, 98, 101, 102, 103, 106, 109, 110, 111, 114, 117, 118, 119, 122, 125
OFFSET
1,1
FORMULA
G.f.: x*(1+x)*(x^2-x+2) / ((1+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = 2*n - cos(Pi*n/2). - Wesley Ivan Hurt, Oct 22 2013
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n > 4.
a(n) = (4*n - i^(-n) - i^n)/2 where i=sqrt(-1).
a(2n) = A047550(n), a(2n-1) = A016825(n-1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/8 - log(2)/4. - Amiram Eldar, Dec 26 2021
MAPLE
A047578:=n->2*n-cos(Pi*n/2): seq(A047578(n), n=1..100); # Wesley Ivan Hurt, Oct 22 2013
MATHEMATICA
Flatten[#+{2, 5, 6, 7}&/@(8Range[0, 20])] (* Harvey P. Dale, Jan 26 2011 *)
PROG
(Sage) [lucas_number1(n, 0, 1)+2*n+2 for n in range(0, 56)] # Zerinvary Lajos, Jul 06 2008
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Wesley Ivan Hurt, May 20 2016
STATUS
approved