login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047577
Numbers that are congruent to {0, 1, 5, 6, 7} mod 8.
1
0, 1, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 37, 38, 39, 40, 41, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 93, 94, 95, 96, 97, 101, 102, 103
OFFSET
1,3
FORMULA
From Chai Wah Wu, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f.: x^2*(x^4 + x^3 + x^2 + 4*x + 1)/(x^6 - x^5 - x + 1). (End)
From Wesley Ivan Hurt, Jul 27 2016: (Start)
a(n) = a(n-5) + 8 for n>5.
a(n) = (40*n - 25 + 3*(n mod 5) + 3*((n+1) mod 5) - 12*((n+2) mod 5) + 3*((n+3) mod 5) + 3*((n+4) mod 5))/25.
a(5*k) = 8*k-1, a(5*k-1) = 8*k-2, a(5*k-2) = 8*k-3, a(5*k-3) = 8*k-7, a(5*k-4) = 8*k-8. (End)
MAPLE
A047577:=n->8*floor(n/5)+[0, 1, 5, 6, 7][(n mod 5)+1]: seq(A047577(n), n=0..100); # Wesley Ivan Hurt, Jul 27 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 5, 6, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jul 27 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 5, 6, 7]]; // Wesley Ivan Hurt, Jul 27 2016
CROSSREFS
Sequence in context: A333532 A121537 A285219 * A293481 A174138 A108401
KEYWORD
nonn,easy
STATUS
approved