login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219331
L.g.f.: -log(1 - Sum_{n>=1} x^(n^2)) = Sum_{n>=1} a(n)*x^n/n.
4
1, 1, 1, 5, 6, 7, 8, 13, 28, 36, 45, 59, 92, 134, 186, 269, 375, 538, 761, 1080, 1520, 2157, 3060, 4339, 6181, 8750, 12394, 17554, 24912, 35322, 50066, 70957, 100596, 142665, 202278, 286790, 406520, 576347, 817142, 1158528, 1642461, 2328536, 3301283, 4680417, 6635688
OFFSET
1,4
COMMENTS
Limit a(n)/a(n+1) = 0.705346681379806989636379706393941505260078161512292870... is a real root of 1 = Sum_{n>=1} x^(n^2).
LINKS
FORMULA
Logarithmic derivative of A006456, where A006456(n) is the number of compositions of n into sums of squares.
EXAMPLE
L.g.f.: L(x) = x + x^2/2 + x^3/3 + 5*x^4/4 + 6*x^5/5 + 7*x^6/6 + 8*x^7/7 + 13*x^8/8 + 28*x^9/9 + 36*x^10/10 +...
where
exp(L(x)) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + 11*x^9 + 16*x^10 + 22*x^11 + 30*x^12 +...+ A006456(n)*x^n +...
exp(-L(x)) = 1 - x - x^4 - x^9 - x^16 - x^25 - x^36 +...+ -x^(n^2) +...
PROG
(PARI) {a(n)=n*polcoeff(-log(1-sum(r=1, sqrtint(n+1), x^(r^2)+x*O(x^n))), n)}
for(n=1, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 12 2013
STATUS
approved