login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045529
a(n+1) = 5*a(n)^3 - 3*a(n), a(0) = 1.
31
1, 2, 34, 196418, 37889062373143906, 271964099255182923543922814194423915162591622175362
OFFSET
0,2
COMMENTS
The next term, a(6), has 153 digits. - Harvey P. Dale, Oct 24 2011
LINKS
Daniel Duverney and Takeshi Kurosawa, Transcendence of infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2002), Article 68.
Zalman Usiskin, Problem B-265, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 11, No. 3 (1973), p. 333; Fibonacci Numbers for Powers of 3, Solution to Problem B-265 by Ralph Garfield and David Zeitlin, ibid., Vol. 12, No. 3 (1974), p. 315.
FORMULA
The first example I know in which a(n) can be expressed as (4/5)^(1/2)*cosh(3^n*arccosh((5/4)^(1/2))).
a(n) = Fibonacci(3^n). - Leroy Quet, Mar 17 2002
a(n+1) = a(n)*A002814(n+1). - Lekraj Beedassy, Jun 16 2003
a(n) = (phi^(3^n) - (1 - phi)^(3^n))/sqrt(5), where phi is the golden ratio (A001622). - Artur Jasinski, Oct 05 2008
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) - 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 24 2022: (Start)
a(2*n+2) == a(2*n) (mod 3^(2*n+1)); a(2*n+3) == a(2*n+1) (mod 3^(2*n+2));
a(2*n+1) + a(2*n) == 0 (mod 3^(2*n+1)).
a(2*n) == 1 (mod 3) and a(2*n+1) == 2 (mod 3).
5*a(n)^2 == 2 (mod 3^(n+1)).
In the ring of 3-adic integers, the sequences {a(2*n)} and {a(2*n+1)} are both Cauchy sequences and converge to the pair of 3-adic roots of the quadratic equation 5*x^2 - 2 = 0. (End)
From Amiram Eldar, Jan 07 2023: (Start)
Product_{n>=1} (1 + 2/(sqrt(5)*a(n)-1)) = phi (A001622).
Product_{n>=1} (1 - 2/(sqrt(5)*a(n)+1)) = 1/phi (A094214).
Both formulas are from Duverney and Kurosawa (2022). (End)
MAPLE
a := proc(n) option remember; if n = 0 then 1 else 5*a(n-1)^3 - 3*a(n-1) end if; end:
seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
MATHEMATICA
G = (1 + Sqrt[5])/2; Table[Expand[(G^(3^n) - (1 - G)^(3^n))/Sqrt[5]], {n, 1, 7}] (* Artur Jasinski, Oct 05 2008 *)
Table[Round[(4/5)^(1/2)*Cosh[3^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 4}] (* Artur Jasinski, Oct 05 2008 *)
RecurrenceTable[{a[0]==1, a[n]==5a[n-1]^3-3a[n-1]}, a[n], {n, 6}] (* Harvey P. Dale, Oct 24 2011 *)
NestList[5#^3-3#&, 1, 5] (* Harvey P. Dale, Dec 21 2014 *)
PROG
(Maxima) A045529(n):=fib(3^n)$
makelist(A045529(n), n, 0, 10); /* Martin Ettl, Nov 12 2012 */
CROSSREFS
Cf. (k^n)-th Fibonacci number: A058635 (k=2), this sequence (k=3), A145231 (k=4), A145232 (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).
Sequence in context: A303444 A230244 A365881 * A293245 A077747 A041012
KEYWORD
nonn,easy
STATUS
approved