login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145232
a(n) = Fibonacci(5^n).
9
1, 5, 75025, 59425114757512643212875125, 18526362353047317310282957646406309593963452838196423660508102562977229905562196608078556292556795045922591488273554788881298750625
OFFSET
0,2
LINKS
Robert Frontczak, Problem B-1341, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 62, No. 1 (2024), p. 84.
Thomas Koshy and Zhenguang Gao, Polynomial Extensions of a Diminnie Delight, Fibonacci Quart. 55 (2017), no. 1, 13-20.
Achilleas Sinefakopoulos, Solution to Problem 1909, Crux Mathematicorum, 20 (1994), 295-296.
FORMULA
a(n) = (G^(5^n) - (1 - G)^(5^n))/sqrt(5) where G = (1 + sqrt(5))/2.
a(n) = (2/sqrt(5))*cosh((2*k+1)^n*arccosh(sqrt(5)/2)).
a(n) = (2/sqrt(5))*cosh(5^n*arccosh(sqrt(5)/2)).
a(n) = (5^n)*A128935(n). - R. J. Mathar, Nov 04 2010
a(n) = A000045(A000351(n)). - Michel Marcus, Nov 07 2013
a(n+1) = 25*a(n)^5 - 25*a(n)^3 + 5*a(n) with a(0) = 1. - Peter Bala, Nov 24 2022
a(n) = 5^n * Product_{k=0..n-1} (5*a(k)^4 - 5*a(k)^2 + 1) (Frontczak, 2024). - Amiram Eldar, Feb 29 2024
MAPLE
a := proc(n) option remember; if n = 0 then 1 else 25*a(n-1)^5 - 25*a(n-1)^3 + 5*a(n-1) end if; end:
seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
MATHEMATICA
G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 6}]
Table[Round[N[(2/Sqrt[5])*Cosh[5^n*ArcCosh[Sqrt[5]/2]], 1000]], {n, 1, 4}]
Fibonacci[5^Range[0, 4]] (* Harvey P. Dale, Nov 29 2018 *)
CROSSREFS
Cf. A000045.
Cf. (k^n)-th Fibonacci number: A058635 (k=2), A045529 (k=3), A145231 (k=4), this sequence (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).
Sequence in context: A247845 A050816 A171981 * A263174 A123591 A133381
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 05 2008
STATUS
approved