login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365881
Number of partitions of 2^(2n) into 2^n parts.
1
1, 2, 34, 55974, 676491536028, 406965070979714742549848209, 597255854605931071381819520057048465533319700618519238060
OFFSET
0,2
COMMENTS
Also number of partitions of 2^(2n) where the largest part is 2^n. a(2) = 34: 4111111111111, 421111111111, 42211111111, 4222111111, 422221111, 42222211, 4222222, 43111111111, 4321111111, 432211111, 43222111, 4322221, 433111111, 43321111, 4332211, 433222, 4333111, 433321, 43333, 4411111111, 442111111, 44221111, 4422211, 442222, 44311111, 4432111, 443221, 443311, 44332, 4441111, 444211, 44422, 44431, 4444.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..9 (n = 0..8 from Alois P. Heinz)
FORMULA
a(n) = A327483(2n,n).
a(n) = A008284(4^n,2^n).
EXAMPLE
a(0) = 1: 1.
a(1) = 2: 22, 31.
a(2) = 34: 4444, 5443, 5533, 5542, 5551, 6433, 6442, 6532, 6541, 6622, 6631, 7333, 7432, 7441, 7522, 7531, 7621, 7711, 8332, 8422, 8431, 8521, 8611, 9322, 9331, 9421, 9511, (10)222, (10)321, (10)411, (11)221, (11)311, (12)211, (13)111.
PROG
(Python)
# uses A008284_T
def A365881(n): return A008284_T((m:=1<<n)**2, m) # Chai Wah Wu, Sep 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 21 2023
STATUS
approved