login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+1) = 5*a(n)^3 - 3*a(n), a(0) = 1.
31

%I #59 Jan 07 2023 10:15:22

%S 1,2,34,196418,37889062373143906,

%T 271964099255182923543922814194423915162591622175362

%N a(n+1) = 5*a(n)^3 - 3*a(n), a(0) = 1.

%C The next term, a(6), has 153 digits. - _Harvey P. Dale_, Oct 24 2011

%H Seiichi Manyama, <a href="/A045529/b045529.txt">Table of n, a(n) for n = 0..7</a>

%H Daniel Duverney and Takeshi Kurosawa, <a href="https://doi.org/10.1007/s40993-022-00366-1">Transcendence of infinite products involving Fibonacci and Lucas numbers</a>, Research in Number Theory, Vol. 8 (2002), Article 68.

%H Zalman Usiskin, <a href="https://fq.math.ca/Scanned/11-3/elementary11-3.pdf">Problem B-265</a>, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 11, No. 3 (1973), p. 333; <a href="https://www.fq.math.ca/Scanned/12-3/elementary12-3.pdf">Fibonacci Numbers for Powers of 3</a>, Solution to Problem B-265 by Ralph Garfield and David Zeitlin, ibid., Vol. 12, No. 3 (1974), p. 315.

%F The first example I know in which a(n) can be expressed as (4/5)^(1/2)*cosh(3^n*arccosh((5/4)^(1/2))).

%F a(n) = Fibonacci(3^n). - _Leroy Quet_, Mar 17 2002

%F a(n+1) = a(n)*A002814(n+1). - _Lekraj Beedassy_, Jun 16 2003

%F a(n) = (phi^(3^n) - (1 - phi)^(3^n))/sqrt(5), where phi is the golden ratio (A001622). - _Artur Jasinski_, Oct 05 2008

%F a(n) = Product_{k=0..n-1} (Lucas(2*3^k) - 1) (Usiskin, 1973). - _Amiram Eldar_, Jan 29 2022

%F From _Peter Bala_, Nov 24 2022: (Start)

%F a(2*n+2) == a(2*n) (mod 3^(2*n+1)); a(2*n+3) == a(2*n+1) (mod 3^(2*n+2));

%F a(2*n+1) + a(2*n) == 0 (mod 3^(2*n+1)).

%F a(2*n) == 1 (mod 3) and a(2*n+1) == 2 (mod 3).

%F 5*a(n)^2 == 2 (mod 3^(n+1)).

%F In the ring of 3-adic integers, the sequences {a(2*n)} and {a(2*n+1)} are both Cauchy sequences and converge to the pair of 3-adic roots of the quadratic equation 5*x^2 - 2 = 0. (End)

%F From _Amiram Eldar_, Jan 07 2023: (Start)

%F Product_{n>=1} (1 + 2/(sqrt(5)*a(n)-1)) = phi (A001622).

%F Product_{n>=1} (1 - 2/(sqrt(5)*a(n)+1)) = 1/phi (A094214).

%F Both formulas are from Duverney and Kurosawa (2022). (End)

%p a := proc(n) option remember; if n = 0 then 1 else 5*a(n-1)^3 - 3*a(n-1) end if; end:

%p seq(a(n), n = 0..5); # _Peter Bala_, Nov 24 2022

%t G = (1 + Sqrt[5])/2; Table[Expand[(G^(3^n) - (1 - G)^(3^n))/Sqrt[5]], {n, 1, 7}] (* _Artur Jasinski_, Oct 05 2008 *)

%t Table[Round[(4/5)^(1/2)*Cosh[3^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 4}] (* _Artur Jasinski_, Oct 05 2008 *)

%t RecurrenceTable[{a[0]==1,a[n]==5a[n-1]^3-3a[n-1]},a[n],{n,6}] (* _Harvey P. Dale_, Oct 24 2011 *)

%t NestList[5#^3-3#&,1,5] (* _Harvey P. Dale_, Dec 21 2014 *)

%o (Maxima) A045529(n):=fib(3^n)$

%o makelist(A045529(n),n,0,10); /* _Martin Ettl_, Nov 12 2012 */

%Y Cf. (k^n)-th Fibonacci number: A058635 (k=2), this sequence (k=3), A145231 (k=4), A145232 (k=5), A145233 (k=6), A145234 (k=7), A250487 (k=8), A250488 (k=9), A250489 (k=10).

%Y Cf. A000032, A000045, A001622, A001999, A002814, A006267, A094214.

%K nonn,easy

%O 0,2

%A _Jose Eduardo Blazek_