login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022202
Gaussian binomial coefficients [ n,11 ] for q = 3.
1
1, 265720, 52955405230, 9741692640081640, 1747282899667791058573, 310804949350361548416923680, 55133793282290501540016988429720, 9771253933538933149312961201158497760, 1731212183148357775944585240618840930624286
OFFSET
11,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^11/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)*(1-2187*x)*(1-6561*x)*(1-19683*x)*(1-59049*x)*(1-177147*x)). - Vincenzo Librandi, Aug 11 2016
a(n) = Product_{i=1..11} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 11 2016
MATHEMATICA
Table[QBinomial[n, 11, 3], {n, 11, 20}] (* Vincenzo Librandi, Aug 11 2016 *)
PROG
(Sage) [gaussian_binomial(n, 11, 3) for n in range(11, 20)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 11 2016
(PARI) r=11; q=3; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
CROSSREFS
Sequence in context: A319902 A098188 A095974 * A118062 A263063 A043629
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 11 2016
STATUS
approved