login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022199
Gaussian binomial coefficients [ n,8 ] for q = 3.
1
1, 9841, 72636421, 494894285941, 3287582741506063, 21658948312410865183, 142299528422960399756323, 934054234760012359481199283, 6129263888495201102915629695046, 40216143252770054194345243936096486, 263862583736385343242102717216527933566
OFFSET
8,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^8/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)*(1-2187*x)*(1-6561*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..8} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 07 2016
MATHEMATICA
Table[QBinomial[n, 8, 3], {n, 8, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
PROG
(Sage) [gaussian_binomial(n, 8, 3) for n in range(8, 19)] # Zerinvary Lajos, May 25 2009
(Magma) r:=8; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
(PARI) r=8; q=3; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
CROSSREFS
Sequence in context: A237064 A251977 A196897 * A203809 A257299 A208646
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 07 2016
STATUS
approved