login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022205
Gaussian binomial coefficients [ n,6 ] for q = 4.
1
1, 5461, 23859109, 99277752549, 408235958349285, 1673768626404966885, 6857430062381149327845, 28089747579101385828291045, 115057361291389776393497498085, 471276749188750005563056686387685, 1930351405154232225472089767795511781
OFFSET
6,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^6/((1-x)*(1-4*x)*(1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)*(1-4096*x)). - Vincenzo Librandi, Aug 11 2016
a(n) = Product_{i=1..6} (4^(n-i+1)-1)/(4^i-1), by definition. - Vincenzo Librandi, Aug 11 2016
MATHEMATICA
Table[QBinomial[n, 6, 4], {n, 6, 20}] (* Vincenzo Librandi, Aug 11 2016 *)
PROG
(Sage) [gaussian_binomial(n, 6, 4) for n in range(6, 17)] # Zerinvary Lajos, May 27 2009
(Magma) r:=6; q:=4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 11 2016
(PARI) r=6; q=4; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 01 2018
CROSSREFS
Sequence in context: A028548 A069311 A258128 * A255193 A231269 A232037
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 11 2016
STATUS
approved