login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022203
Gaussian binomial coefficients [ n,12 ] for q = 3.
1
1, 797161, 476599444231, 263026177881648511, 141530177899268957392924, 75525744222315755534269847164, 40192610828533997938427918835113044, 21369772545260475331545384574852469714164, 11358504503408920628447755309084790198295654610
OFFSET
12,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^12/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)*(1-2187*x)*(1-6561*x)*(1-19683*x)*(1-59049*x)*(1-177147*x)*(1-531441*x) ). - Vincenzo Librandi, Aug 11 2016
a(n) = Product_{i=1..12} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 11 2016
MATHEMATICA
Table[QBinomial[n, 12, 3], {n, 12, 20}] (* Vincenzo Librandi, Aug 11 2016 *)
PROG
(Sage) [gaussian_binomial(n, 12, 3) for n in range(12, 21)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 11 2016
(PARI) r=12; q=3; for(n=r, 35, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 01 2018
CROSSREFS
Sequence in context: A254844 A259304 A151561 * A234784 A206135 A237543
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 11 2016
STATUS
approved