login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022204
Gaussian binomial coefficients [ n,5 ] for q = 4.
1
1, 1365, 1490853, 1550842085, 1594283908581, 1634141006295525, 1673768626404966885, 1714043588198181437925, 1755207390500040817377765, 1797339217481455290934231525, 1840477112202685809580351554021
OFFSET
5,2
LINKS
FORMULA
G.f.: x^5/((1-x)*(1-4*x)*(1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)). - Vincenzo Librandi, Aug 11 2016
a(n) = Product_{i=1..5} (4^(n-i+1)-1)/(4^i-1), by definition. - Vincenzo Librandi, Aug 11 2016
MATHEMATICA
Table[QBinomial[n, 5, 4], {n, 5, 20}] (* Vincenzo Librandi, Aug 11 2016 *)
PROG
(Sage) [gaussian_binomial(n, 5, 4) for n in range(5, 16)] # Zerinvary Lajos, May 27 2009
(Magma) r:=5; q:=4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 11 2016
(PARI) r=5; q=4; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 01 2018
CROSSREFS
Sequence in context: A069310 A096117 A140936 * A015405 A295466 A292780
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 11 2016
STATUS
approved