login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362589
Triangular array read by rows. T(n,k) is the number of ways to form an ordered pair of n-permutations and then choose a size k subset of its common descent set, n >= 0, 0 <= k <= max{0,n-1}.
0
1, 1, 4, 1, 36, 18, 1, 576, 432, 68, 1, 14400, 14400, 3900, 250, 1, 518400, 648000, 252000, 32400, 922, 1, 25401600, 38102400, 19404000, 3880800, 262542, 3430, 1, 1625702400, 2844979200, 1795046400, 493920000, 56664384, 2119152, 12868, 1
OFFSET
0,3
LINKS
L. Carlitz, R. Scoville and T. Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc., 80 (1974), 881-884.
FORMULA
Sum_{n>=0} Sum_{k=0..n-1} T(n,k)*u^k*z^n/(n!)^2 = u/(u + 1 - E(u*z)) where E(z) = Sum_{n>=0} z^n/(n!)^2.
Column k=1: Sum_{k=1..n-1} A192721(n,k)*k gives total number of common descents over all permutation pairs.
EXAMPLE
Triangle begins:
1;
1;
4, 1;
36, 18, 1;
576, 432, 68, 1;
14400, 14400, 3900, 250, 1;
...
MATHEMATICA
nn = 8; B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[u/(u + 1 - e[u z]), {z, 0, nn}], {z, u}]] // Flatten
CROSSREFS
Cf. A001044 (column k=0), A102221 (row sums), A192721.
Sequence in context: A144267 A011801 A169656 * A303987 A297900 A363819
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, May 01 2023
STATUS
approved